Mathematik Abitur Bayern 2014 B Geometrie 1 - Aufgaben mit Lösungen
Teilaufgabe a
In einem kartesischen Koordinatensystem legen die Punkte \(A\,(4|0|0)\), \(B\,(0|4|0)\) und \(C\,(0|0|4)\) das Dreieck \(ABC\) fest, das in der Ebene \(E\,\colon \, x_1 + x_2 + x_3 = 4\) liegt.
Bestimmen Sie den Flächeninhalt des Dreiecks \(ABC\).
(3 BE)
Teilaufgabe b
Das Dreieck \(ABC\) stellt modellhaft einen Spiegel dar. Der Punkt \(P\,(2|2|3)\) gibt im Modell die Position einer Lichtquelle an, von der ein Lichtstrahl ausgeht.
Die Richtung dieses Lichtstrahls wird im Modell durch den Vektor \(\displaystyle \overrightarrow{v} = \begin{pmatrix} -1 \\ -1 \\ -4 \end{pmatrix}\) beschrieben.
Geben Sie eine Gleichung der Geraden \(g\) an, entlang derer der Lichtstrahl im Modell verläuft. Bestimmen Sie die Koordinaten des Punkts \(R\), in dem \(g\) die Ebene \(E\) schneidet, und begründen Sie, dass der Lichtstrahl auf dem dreieckigen Spiegel auftrifft.
(zur Kontrolle: \(R\,(1{,}5|1{,}5|1)\))
(5 BE)
Teilaufgabe c
Der einfallende Lichtstrahl wird in demjenigen Punkt des Spiegels reflektiert, der im Modell durch den Punkt \(R\) dargestellt wird. Der reflektierte Lichtstrahl geht für einen Beobachter scheinbar von einer Lichtquelle aus, deren Position im Modell durch den Punkt \(Q\,(0|0|1)\) beschrieben wird (vgl. Abbildung).
