Mathematik Abitur Bayern 2016 A Stochastik 1 - Aufgaben mit Lösungen

Teilaufgabe 1

Die beiden Baumdiagramme gehören zum selben Zufallsexperiment mit den Ereignissen \(A\) und \(B\).

Berechnen Sie die Wahrscheinlichkeit \(P(B)\) und ergänzen Sie anschließend an allen Ästen des rechten Baumdiagramms die zugehörigen Wahrscheinlichkeiten.

Abbildung Baumdiagramm links zu Teilaufgabe 1 - Stochastik 1 - Prüfungsteil A - Mathematik Abitur Bayern 2016
Abbildung Baumdiagramm rechts zu Teilaufgabe 1 - Stochastik 1 - Prüfungsteil A - Mathematik Abitur Bayern 2016

(Teilergebnis: \(P(B) = 0{,}5\))

(5 BE)

Teilaufgabe 2a

Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl \((Z)\) oder zum zweiten Mal Wappen \((W)\) oben liegt. Als Ergebnismenge wird festgelegt: \(\{ZZ; WW; ZWZ; ZWW; WZZ; WZW\}\).

Begründen Sie, dass dieses Zufallsexperiment kein Laplace-Experiment ist.

(2 BE)

Teilaufgabe 2b

Die Zufallsgröße \(X\) ordnet jedem Ergebnis die Anzahl der entsprechenden Münzwürfe zu. Berechnen Sie den Erwartungswert von \(X\).

(3 BE)