Stochastik 1

  • Vor einer Schule stehen zehn Fahrräder nebeneinander; zwei davon sind Mountainbikes. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Mountainbikes unmittelbar nebeneinander stehen, wenn die Anordnung der Fahrräder zufällig erfolgte.

    (3 BE)

  • Die beiden entnommenen Bausteine haben tatsächlich die gleiche Farbe. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Bausteine rot sind.

    (2 BE)

  • Der Anteil der Linkshänder in der Bevölkerung Deutschlands beträgt ein Sechstel. Aus der Bevölkerung werden acht Personen zufällig ausgewählt. Zwei der folgenden Terme I bis VI beschreiben die Wahrscheinlichkeit dafür, dass genau fünf dieser Personen Linkshänder sind. Geben Sie diese beiden Terme an.

    \[\textsf{I} \enspace \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)\]

    \[\textsf{II} \enspace \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{III} \enspace 1 - \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)^5\]

    \[\textsf{IV} \enspace \binom{8}{5} \cdot \left( \frac{5}{6} \right)^5 \cdot \left( \frac{1}{6} \right)^3\]

    \[\textsf{V} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{VI} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^3 \cdot \left( \frac{5}{6} \right)^5\]

    (2 BE)

  • Für einen bestimmten Wert \(n \in \{1;2;3;\dots\}\) werden für \(p \in \;]0;1[\) die binomialverteilten Zufallsgrößen \(Z_p\) mit den Parametern \(n\) und \(p\) betrachtet. Weisen Sie nach, dass unter diesen Zufallsgrößen diejenige mit \(p = 0{,}5\) die größte Varianz hat.

    (3 BE) 

  • Allgemein gilt für eine Zufallsgröße \(X\) mit Erwartungswert \(\mu\) und Standardabweichung \(\sigma\) folgende Ungleichung für \(k > 0\):

    \[P(\mu - k \cdot \sigma < X < \mu + k \cdot \sigma) \geq 1 - \frac{1}{k^2}\]

    Erläutern Sie die Aussage dieser Ungleichung für \(k = 2\).

    (3 BE)

  • Tatsächlich ist der Anteil der Beschäftigten mit einem Jobticket an beiden Standorten unterschiedlich; am Standort B besitzt nur die Hälfte der Beschäftigten ein Jobticket. Berechnen Sie die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Beschäftigter des Autozulieferers, der ein Jobticket besitzt, am Standort A arbeitet.

    (3 BE) 

  • In einem Parkhaus befinden sich insgesamt 100 Parkplätze.

    Im Parkhaus sind 20 Parkplätze frei; vier Autofahrer suchen jeweils einen Parkplatz. Formulieren Sie in diesem Sachzusammenhang zu den folgenden Termen jeweils eine Aufgabenstellung, deren Lösung sich durch den Term berechnen lässt.

    \[\sf{α)} \; 20 \cdot 19 \cdot 18 \cdot 17 \qquad \qquad \sf{β)} \; \binom{20}{4}\]

    (3 BE)

  • Am Ausgang des Freizeitparks gibt es einen Automaten, der auf Knopfdruck einen Anstecker mit einem lustigen Motiv bedruckt und anschließend ausgibt. Für den Druck wird aus \(n\) verschiedenen Motiven eines zufällig ausgewählt, wobei jedes Motiv die gleiche Wahrscheinlichkeit hat.

    Ein Kind holt sich drei Anstecker aus dem Automaten.

    Bestimmen Sie für den Fall \(n = 5\) die Wahrscheinlichkeit dafür, dass nicht alle drei Anstecker dasselbe Motiv haben.

    (2 BE)

  • Begründen Sie, dass die Ereignisse „Eine aus den 200 Jugendlichen zufällig ausgewählte Person besitzt ein Fernsehgerät." und „Eine aus den 200 Jugendlichen zufällig ausgewählte Person ist ein Mädchen." abhängig sind.

    (2 BE)

  • Aus den 200 Jugendlichen wird eine Person zufällig ausgewählt, die ein Fernsehgerät besitzt. Ermitteln Sie die Wahrscheinlichkeit dafür, dass diese Person weiblich ist.

    (2 BE)

  • Der Sender hat festgestellt, dass unmittelbar neben dem Moderator auf einer Seite die Journalistin und auf der anderen Seite einer der Politiker sitzen soll. Berechnen Sie unter Berücksichtigung dieser weiteren Einschränkung die Anzahl der möglichen Sitzordnungen. 

    (4 BE)

  • Ein Unternehmen organisiert Fahrten mit einem Ausflugsschiff, das Platz für 60 Fahrgäste bietet.

    Betrachtet wird eine Fahrt, bei der das Schiff voll besetzt ist. Unter den Fahrgästen befinden sich Erwachsene, Jugendliche und Kinder. Die Hälfte der Fahrgäste isst während der Fahrt ein Eis, von den Erwachsenen nur jeder Dritte, von den Jugendlichen und Kindern 75 %. Berechnen Sie, wie viele Erwachsene an der Fahrt teilnehmen.

    (3 BE)

  • Die Zufallsgröße \(X\) ordnet jedem Ergebnis die Anzahl der entsprechenden Münzwürfe zu. Berechnen Sie den Erwartungswert von \(X\).

    (3 BE)

  • Im Folgenden gilt beim Öffnen einer Flasche steht \(P(A) = 0{,}05\) und \(P(B) = 0{,}044\).

    Es werden nacheinander zehn Flaschen geöffnet. Berechnen Sie die Wahrscheinlichkeit dafür, dass sich erstmals in der fünften Flasche eine Gewinnmarke befindet. 

    (2 BE)

  • Gegeben sind grüne und rote Würfel, deren Seitenflächen unterschiedlich beschriftet sind und beim Werfen mit jeweils gleicher Wahrscheinlichkeit auftreten. Jeder grüne Würfel trägt auf fünf Seitenflächen die Augenzahl 1 und auf einer die Augenzahl 6. Jeder rote Würfel trägt auf jeweils zwei Seitenflächen die Augenzahlen 1, 3 bzw. 6.

    In einer Urne befinden sich drei grüne Würfel und zwei rote Würfel. Der Urne werden mit einem Griff zwei Würfel zufällig entnommen. Geben Sie einen Term an, mit dem man die Wahrscheinlichkeit dafür bestimmen kann, dass ein roter Würfel und ein grüner Würfel entnommen werden.

    (2 BE)

  • Zehn 40- bis 44-jährige Frauen wurden zufällig ausgewählt.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(A\,\colon\;\)„Unter ihnen sind genau drei Raucherinnen."

    \(B\,\colon\;\)„Unter ihnen sind höchstens vier Raucherinnen." 

    (4 BE)

  • Vier Frauen wurden zufällig ausgewählt. Zwei gehören zur Altersgruppe der 40- bis 44-jährigen und jeweils eine zu den Altersgruppen der 55- bis 59-jährigen und 65- bis 69-jährigen. Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Frauen mindestens eine Raucherin ist.

    (4 BE)

  • Ein Moderator lädt zu einer Talkshow drei Politiker, eine Journalistin und zwei Mitglieder einer Bürgerinitiative ein. Für die Diskussionsrunde ist eine halbkreisförmige Sitzordnung vorgesehen, bei der nach den Personen unterschieden wird und der Moderator den mittleren Platz einnimmt.

    Geben Sie einen Term an, mit dem die Anzahl der möglichen Sitzordnungen berechnet werden kann, wenn keine weiteren Einschränkungen berücksichtigt werden.

    (1 BE)

  • Die Geschwindigkeitsmessungen werden über einen längeren Zeitraum fortgesetzt. Dabei zeigt sich, dass die Verteilung der auf km/h genau gemessenen Geschwindigkeiten näherungsweise durch eine Binomialverteilung mit den Parametern \(n = 100\) und \(p = 0{,}8\) beschrieben werden kann. Beispielsweise entspricht \(B(100; 0{,}8; 77)\) näherungsweise dem Anteil der mit einer Geschwindigkeit von 77 km/h erfassten Pkw.

    Bestätigen Sie exemplarisch für eine der beiden mittleren Geschwindigkeitsklassen der oben dargestellten Stichprobe, dass die ermittelte Anzahl der Fahrten mit der Beschreibung durch die Binomialverteilung im Einklang steht.

    (4 BE)

  • Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl \((Z)\) oder zum zweiten Mal Wappen \((W)\) oben liegt. Als Ergebnismenge wird festgelegt: \(\{ZZ; WW; ZWZ; ZWW; WZZ; WZW\}\).

    Begründen Sie, dass dieses Zufallsexperiment kein Laplace-Experiment ist.

    (2 BE)