Wahrscheinlichkeitsrechnung

  • Ein Unternehmen fertigt in großer Stückzahl ein elektronisches Bauteil. Bei der Herstellung können zwei Arten von Fehlern auftreten, ein elektrischer Fehler und ein optischer Fehler. Betrachtet werden folgende Ereignisse:

    \(E\): „Ein zufällig ausgewähltes Bauteil weist einen elektrischen Fehler auf."

    \(O\): „Ein zufällig ausgewähltes Bauteil weist einen optischen Fehler auf."

    Aus laufender Qualitätskontrolle ist bekannt, dass 5 % der gefertigten Bauteile einen elektrischen Fehler aufweisen. Zudem haben 3 % einen elektrischen, aber keinen optischen Fehler sowie 4 % einen optischen, aber keinen elektrischen Fehler.

     

    a) Beschreiben Sie das Ereignis \(\overline{E \cup O}\) im Sachzusammenhang.

    b) Erstellen Sie eine vollständig ausgefüllte Vierfeldertafel und geben Sie daraus an, mit welcher Wahrscheinlichkeit ein zufällig ausgewähltes Bauteil

    α) genau einen der beiden Fehler aufweist.

    β) höchstens einen der beiden Fehler aufweist.

    c) Untersuchen Sie die Ereignisse \(E\) und \(O\) auf Unabhängigkeit.

    d) Wie viele Bauteile müssen mindestens zufällig ausgewählt werden, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Bauteil zu erhalten, das einen elektrischen Fehler aufweist?

  • Aufgabe 1

    Berechnen Sie jeweils die erste Ableitung der folgenden Funktionen:

     

    a) \(f(x) = (3x + 2) \cdot \sqrt{\dfrac{1}{x} + 2}; \; x \neq 0\)

    b) \(g(x) = e^{\frac{\cos{x}}{x}}; \; x \neq 0\)

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto 2x^{2} \cdot \sin{x}\).

    Bestimmen Sie die Gleichung der Tangente \(T\) an den Graphen \(G_{f}\) der Funktion \(f\) an der Stelle \(x = \frac{\pi}{2}\).

     

    Aufgabe 3

    Gegeben ist die Funktionenschar \(f_{k} \colon x \mapsto x \cdot \sqrt{k - 2x}\) mit \(k \in \mathbb R^{+}\).

     

    a) Geben Sie die maximale Definitionsmenge von \(f_{k}\) in Abhängigkeit des Parameters \(k\) an.

    b) Untersuchen Sie das Symmetrieverhalten der Kurvenschar von \(f_{k}\) bezüglich des Koordinatensystems.

    c) Untersuchen Sie das Verhalten von \(f_{k}\) an den Rändern des Definitionsbereichs.

    d) Weisen Sie nach, dass für die Ableitung von \(f_{k}\) gilt: \(f'_{k}(x) = \dfrac{k - 3x}{\sqrt{k - 2x}}\).

    Im Folgenden sei \(k = 4\). Der Graph der Funktion \(f_{4}\) wird mit \(G_{f_{4}}\) bezeichnet.

    e) Mithilfe des Ansatzes \(x = f_{4}(x)\) lässt sich der Schnittpunkt des Graphen \(G_{f_{4}}\) mit dem Graphen der Umkehrfunktion von \(f_{4}\) ermitteln. Beschreiben Sie die Idee dieses Ansatzes. Eine Berechnung ist nicht erforderlich!

    f) Untersuchen Sie das Monotonieverhalten von \(f_{4}\) unter Berücksichtigung des maximalen Definitionsbereichs und bestimmen Sie die Lage und Art des Extrempunkts von \(G_{f_{4}}\).

     

    Aufgabe 4

    Gegeben sind die Punkte \(A(4|-2|-1)\), \(B(2|4|5)\) und \(C(5|-6|3)\).

     

    a) Ermitteln Sie die Größe des Innenwinkels \(\alpha\) des Dreiecks \(ABC\).

    b) Geben Sie die Gleichung der Kugel \(K\) mit dem Mittelpunkt \(C\) in Koordinatendarstellung an, auf deren Oberfläche der Punkt \(A\) liegt. Untersuchen Sie mithilfe der Kugelgleichung, ob der Punkt \(B\) innerhalb der Kugel \(K\), auf der Kugeloberfläche von \(K\) oder außerhalb von \(K\) liegt.

     

    Aufgabe 5

    Ein Unternehmen fertigt in großer Stückzahl ein elektronisches Bauteil. Bei der Herstellung können zwei Arten von Fehlern auftreten, ein elektrischer Fehler und ein optischer Fehler. Betrachtet werden folgende Ereignisse:

    \(E\): „Ein zufällig ausgewähltes Bauteil weist einen elektrischen Fehler auf."

    \(O\): „Ein zufällig ausgewähltes Bauteil weist einen optischen Fehler auf."

    Aus laufender Qualitätskontrolle ist bekannt, dass 5 % der gefertigten Bauteile einen elektrischen Fehler aufweisen. Zudem haben 3 % einen elektrischen, aber keinen optischen Fehler sowie 4 % einen optischen, aber keinen elektrischen Fehler.

     

    a) Beschreiben Sie das Ereignis \(\overline{E \cup O}\) im Sachzusammenhang.

    b) Erstellen Sie eine vollständig ausgefüllte Vierfeldertafel und geben Sie daraus an, mit welcher Wahrscheinlichkeit ein zufällig ausgewähltes Bauteil

    α) genau einen der beiden Fehler aufweist.

    β) höchstens einen der beiden Fehler aufweist.

    c) Untersuchen Sie die Ereignisse \(E\) und \(O\) auf Unabhängigkeit.

    d) Wie viele Bauteile müssen mindestens zufällig ausgewählt werden, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Bauteil zu erhalten, das einen elektrischen Fehler aufweist?

  • Erstellen Sie zu der beschriebenen Situation ein vollständig beschriftetes Baumdiagramm oder eine vollständig ausgefüllte Vierfeldertafel.

    (4 BE)

  • Die beiden entnommenen Bausteine haben tatsächlich die gleiche Farbe. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Bausteine rot sind.

    (2 BE)

  • Der Anteil der Linkshänder in der Bevölkerung Deutschlands beträgt ein Sechstel. Aus der Bevölkerung werden acht Personen zufällig ausgewählt. Zwei der folgenden Terme I bis VI beschreiben die Wahrscheinlichkeit dafür, dass genau fünf dieser Personen Linkshänder sind. Geben Sie diese beiden Terme an.

    \[\textsf{I} \enspace \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)\]

    \[\textsf{II} \enspace \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{III} \enspace 1 - \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)^5\]

    \[\textsf{IV} \enspace \binom{8}{5} \cdot \left( \frac{5}{6} \right)^5 \cdot \left( \frac{1}{6} \right)^3\]

    \[\textsf{V} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{VI} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^3 \cdot \left( \frac{5}{6} \right)^5\]

    (2 BE)

  • Ermitteln Sie auf fünf Prozent genau, wie groß die Wahrscheinlichkeit dafür, sich bei einer Schriftprobe richtig zu entscheiden, für einen Bewerber mindestens sein muss, damit die Wahrscheinlichkeit dafür, dass er den Vortest besteht, mindestens 90 % beträgt.

    (3 BE)

  • Bei der Wintersportart Biathlon wird bei jeder Schießanlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit \(p\) beschrieben.

    Geben Sie für die folgenden Ereignisse \(A\) und \(B\) jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von \(p\) beschreibt.

    \(A\): „Der Biathlet trifft bei genau vier Schüssen."

    \(B\): „Der Biathlet trifft nur bei den ersten beiden Schüssen."

    (3 BE)

  • Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl \((Z)\) oder zum zweiten Mal Wappen \((W)\) oben liegt. Als Ergebnismenge wird festgelegt: \(\{ZZ; WW; ZWZ; ZWW; WZZ; WZW\}\).

    Begründen Sie, dass dieses Zufallsexperiment kein Laplace-Experiment ist.

    (2 BE)

  • Aus den 200 Jugendlichen wird eine Person zufällig ausgewählt, die ein Fernsehgerät besitzt. Ermitteln Sie die Wahrscheinlichkeit dafür, dass diese Person weiblich ist.

    (2 BE)

  • Schwarze und weiße Kugeln sind wie folgt auf drei Urnen verteilt:

    Abbildung Teilaufgabe 2 Stochastik 2 Mathematik Abitur Bayern 2017 A

    Aus Urne A wird zunächst eine Kugel zufällig entnommen und in Urne B gelegt. Anschließend wird aus Urne B eine Kugel zufällig entnommen und in Urne C gelegt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich danach in Urne C zwei weiße Kugeln und eine schwarze Kugel befinden.

    (2 BE)

  • Eine Kiste enthält vier blaue, zwei gelbe und drei rote Bausteine. Zwei Bausteine werden zufällig entnommen.

    Zeigen Sie, dass die Wahrscheinlichkeit dafür, dass die beiden Bausteine die gleiche Farbe haben, \(\frac{5}{18}\) beträgt.

    (3 BE)

Seite 1 von 5