Analysis 2

  • Einer der folgenden Terme nähert den Term der in \(\mathbb R \, \backslash \{0\}\) definierten Funktion \(u \,\colon x \mapsto \dfrac{1}{x} + x + 1\) für große Werte von \(x\) am besten. Geben Sie diesen Term an und machen Sie Ihre Antwort plausibel.

    \(\textsf{I} \enspace \dfrac{1}{x} \qquad \quad \)\(\textsf{II} \enspace x \qquad \quad \)\(\textsf{III} \enspace x + 1 \qquad \quad \)\(\textsf{IV} \enspace \dfrac{1}{x} + 1 \qquad \quad \)\(\textsf{V} \enspace \dfrac{1}{x} + x\)

    (3 BE)

  • Geben Sie einen möglichen Term der Funktion \(t\) an. Zeigen Sie für dieses \(t\) die Gültigkeit der Aussage aus Aufgabe 3a durch Integration mithilfe einer Stammfunktion.

    (4 BE)

  • Der Graph einer in \(\mathbb R\) definierten integrierbaren Funktion \(t\) ist punktsymmetrisch bezüglich des Koordinatenursprungs.

    Begründen Sie, dass für alle \(a \in \mathbb R\) gilt: \(\displaystyle \int_{-a}^{a} t(x)\,dx = 0\).

    (3 BE)

  • Gegeben sind die folgenden Funktionen mit jeweils maximaler Definitionsmenge:

    \[p\,\colon x \mapsto \dfrac{1}{x - 1}\]

    \[q\,\colon x \mapsto \sqrt{x - 1}\]

    \[r\,\colon x \mapsto \ln (x - 1)\]

    Geben Sie jeweils die Definitionsmenge an und untersuchen Sie die Funktionen auf Nullstellen.

    (5 BE)

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{n} \colon x \mapsto x^4 - 2x^n\) mit \(n \in \mathbb N\) sowie die in \(\mathbb R\) definierte Funktion \(f_{0} \colon x \mapsto x^4 - 2\).

    Die Abbildungen 1 bis 4 zeigen die Graphen der Funktionen \(f_{0}\), \(f_{1}\), \(f_{2}\) bzw. \(f_{4}\). Ordnen Sie jeder dieser Funktionen den passenden Graphen zu und begründen Sie drei Ihrer Zuordnungen durch Aussagen zur Symmetrie, zu den Schnittpunkten mit den Koordinatenachsen oder dem Verhalten an den Grenzen des Definitionsbereichs des jeweiligen Graphen.

    Abbildung 1 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Abbildung 2 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Abbildung 3 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 3

    Abbildung 4 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 4

     

    (4 BE)

  • Ermitteln Sie diejenigen Werte von \(k\), für die die jeweils zugehörige Funktion \(p_{k}\) keine Nullstelle besitzt.

    (3 BE)

  • Die Funktion \(F\) ist die in \(\mathbb R\) definierte Stammfunktion von \(f\) mit \(F(3) = 0\).

    Geben Sie mithilfe der Abbildung einen Näherungswert für die Ableitung von \(F\) an der Stelle \(x = 2\) an.

    (1 BE)

  • Abbildung 1 zeigt den Graphen \(G_{f}\) einer ganzrationalen Funktion \(f\) drittens Grades mit Definitions­menge \(\mathbb R\). \(G_{f}\) schneidet die \(x\)-Achse bei \(x = 0\), \(x = 5\) und \(x = 10\) und verläuft durch den Punkt \((1|2)\).

    Ermitteln Sie einen Funktionsterm von \(f\).

    (zur Kontrolle: \(f(x) = \frac{1}{18} \cdot (x^{3} - 15x^{2} + 50x)\))

    Abbildung 1 Aufgabe 1 Analysis 2 Mathematik Abitur Bayern 2018Abb. 1

    (4 BE)

  • Eine zweite Modellierung des Querschnitts der Tunnelwand verwendet eine Kosinusfunktion vom Typ \(k \colon x \mapsto 5 \cdot \cos(c \cdot x)\) mit \(c \in \mathbb R\) und Definitionsbereich \(D_{k} = [-5;5]\), bei der offensichtlich Bedingung II erfüllt ist.

    Bestimmen Sie \(c\) so, dass auch Bedingung I erfüllt ist, und berechnen Sie damit den Inhalt der Querschnittfläche des Tunnels.

    (zur Kontrolle: \(c = \frac{\pi}{10}\), Inhalt der Querschnittfläche: \(\frac{100}{\pi}\) m²)

    (5 BE)

  • Die Abbildung 1 zeigt einen Teil des Graphen \(G_{h}\) einer in \(\mathbb R \backslash \{2\}\) definierten gebrochenrationalen Funktion \(h\). Die Funktion \(h\) hat bei \(x = 2\) eine Polstelle ohne Vorzeichenwechsel; zudem besitzt \(G_{h}\) die Gerade mit der Gleichung \(y = x - 7\) als schräge Asymptote.

    Abbildung 1 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Zeichnen Sie in die Abbildung 1 die Asymptoten von \(G_{h}\) ein und skizzieren Sie im Bereich \(x < 2\) einen möglichen Verlauf von \(G_{h}\).

    (3 BE)

  • Jeder der in der Abbildung dargestellten Graphen I, II und III gehört zu genau einer der Temperaturen 4000 K, 6000 K und 8000 K. Ordnen Sie die Temperaturen den Graphen zu und begründen Sie Ihre Zuordnung.

    (3 BE)

  • An der Stelle \(x = 2\) hat \(G_{f}\) einen Wendepunkt. Beschreiben Sie, wie man rechnerisch vorgehen könnte, um dies zu begründen. Geben Sie die Bedeutung der \(x\)-Koordinate des Wendepunkts im Sachzusammenhang an.

    (3 BE)

  • Ermitteln Sie unter Verwendung von Ergebnissen aus Aufgabe 1 den Zeitpunkt auf Sekunden genau, zu dem der Anteil von Tl 207-Kernen im Gefäß am größten ist.

    (2 BE)

  • Ein Motorboot fährt mit konstanter Motorleistung auf einem Fluss eine Strecke der Länge 10 km zuerst flussabwärts und unmittelbar anschließend flussaufwärts zum Ausgangspunkt zurück. Mit der Eigengeschwindigkeit des Motorboots wird der Betrag der Geschwindigkeit bezeichnet, mit der sich das Boot bei dieser Motorleistung auf einem stehenden Gewässer bewegen würde.

    Im Folgenden soll modellhaft davon ausgegangen werden, dass die Eigengeschwindigkeit des Boots während der Fahrt konstant ist und das Wasser im Fluss mit der konstanten Geschwindigkeit 5 \(\frac{\sf{km}}{\sf{h}}\) fließt. Die für das Wendemanöver erforderliche Zeit wird vernachlässigt.

    Die Gesamtfahrzeit in Stunden, die das Boot für Hinfahrt und Rückfahrt insgesamt benötigt, wird im Modell für \(x > 5\) durch den Term \(\displaystyle t(x) = \frac{10}{x + 5} + \frac{10}{x - 5}\) angegeben. Dabei ist \(x\) die Eigengeschwindigkeit des Boots in \(\frac{\sf{km}}{\sf{h}}\).

    Bestimmen Sie auf der Grundlage des Modells für eine Fahrt mit einer Eigengeschwindigkeit von 10 \(\frac{\sf{km}}{\sf{h}}\) und für eine Fahrt mit einer Eigengeschwindigkeit von 20 \(\frac{\sf{km}}{\sf{h}}\) jeweils die Gesamtfahrzeit in Minuten.

    (2 BE)

  • Ermitteln Sie die Gleichung der Tangente an \(G_{g}\) im Schnittpunkt von \(G_{g}\) mit der \(x\)-Achse.

    (4 BE)

  • Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

    (Teilergebniss: \(x\)-Koordinate des Extrempunkts: \(\ln 4\))

    (4 BE)

  • Berechnen Sie die mittlere Steigung des Graphen von \(f\) im Bereich \(-1 \leq x \leq 1\) auf Hundertstel genau und bestimmen Sie grafisch die Steigung des Graphen von \(f\) in seinem Wendepunkt.

    (5 BE)

  • Berechnen Sie \(f(0)\) sowie \(f(3)\) und skizzieren Sie \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse in einem Koordinatensystem.

    (3 BE)

  • In einem Koordinatensystem (vgl. Abbildung 1) werden alle Rechtecke betrachtet, die folgende Bedingungen erfüllen:

    • Zwei Seiten liegen auf den Koordinatenachsen.

    • Ein Eckpunkt liegt auf dem Graphen \(G_f\) der Funktion \(f \, \colon x \mapsto -\ln x\) mit \(0 < x < 1\).

    Abbildung 1 zeigt ein solches Rechteck.

    Abbildung 1 zu Teilaufgabe 4Abb. 1

    Unter den betrachteten Rechtecken gibt es eines mit größtem Flächeninhalt. Berechnen Sie die Seitenlängen dieses Rechtecks.

    (5 BE)

  • Die Funktion \(E\) mit \(E(x) = 23x\) gibt für \(0 \leq x \leq 9\) den Erlös (in 1000 Euro) an, den das Unternehmen beim Verkauf von \(x\) Kubikmetern der Flüssigkeit erzielt. Für die sogenannte Gewinnfunktion \(G\) gilt \(G(x) = E(x) - K(x)\). Positive Werte von \(G\) werden als Gewinn bezeichnet, negative als Verlust.

    Zeigen Sie, dass das Unternehmen keinen Gewinn erzielt, wenn vier Kubikmeter der Flüssigkeit verkauft werden.

    (2 BE)