Bernoulli Experiment

  • Zwei Seitenflächen eines Laplace-Würfels sind rot, drei sind gelb und eine Seitenfläche ist blau.

    Wie viele Würfe sind mindestens nötig, um mit einer Wahrscheinlichkeit von mindestens 60 % mindestens dreimal die Farbe Rot zu erhalten.

  • Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

    Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

  • Es werden mehrere Flaschen geöffnet und für jede dieser Flaschen wird festgestellt, ob das Ereignis \(A\) eintritt. Begründen Sie, dass dieses Zufallsexperiment näherungsweise durch eine Bernoullikette beschrieben werden kann.

    (2 BE)

  • Die Wahrscheinlichkeit dafür, dass beim einmaligen Drehen der gelbe Sektor getroffen wird, beträgt 50 %. Felix hat 100 Drehungen des Glücksrads beobachtet und festgestellt, dass bei diesen der Anteil der Drehungen, bei denen der gelbe Sektor getroffen wurde, deutlich geringer als 50 % war. Er folgert: „Der Anteil der Drehungen, bei denen der gelbe Sektor getroffen wird, muss also bei den nächsten 100 Drehungen deutlich größer als 50 % sein." Beurteilen Sie die Aussage von Felix.

    (2 BE)

  • Das elektronische Stabilitätsprogramm (ESP) eines Autos kann Schleuderbewegungen und damit Unfälle verhindern.

    Gehen Sie bei den folgenden Aufgaben davon aus, dass 40 % aller Autos mit ESP ausgerüstet sind.

    200 Autos werden nacheinander zufällig ausgewählt; die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Autos mit ESP.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass von den ausgewählten Autos mindestens 70 mit ESP ausgerüstet sind.

    (3 BE)

  • Der Anbaubetrieb sät 200 Samenkörner der Qualität B. Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(E\): „Von den gesäten Samenkörnern keimen genau 140."

    \(F\): „Von den gesäten Samenkörnern keimen mehr als 130 und weniger als 150."

    (3 BE)

  • Gegeben ist eine Bernoullikette mit der Länge \(n\) und der Trefferwahrscheinlichkeit \(p\). Erklären Sie, dass für alle \(k \in \{0; 1; 2; \dots; n\}\) die Beziehung \(B(n; p; k) = B(n; 1 - p; n - k)\) gilt. 

    (2 BE)

  • Ein Telekommunikationsunternehmen möchte neue Kunden gewinnen. Dazu schickt es an zufällig ausgewählte Haushalte Werbematerial. Im Folgenden soll davon ausgegangen werden, dass die angeschriebenen Haushalte unabhängig voneinander mit einer Wahrscheinlichkeit von jeweils 20 % noch nicht über einen schnellen Internetanschluss verfügen.

    Ermitteln Sie jeweils die Wahrscheinlichkeit dafür, dass unter 10 angeschriebenen Haushalten

    ● mindestens zwei noch nicht über einen schnellen Internetanschluss verfügen.

    ● genau acht bereits über einen schnellen Internetanschluss verfügen.

    (4 BE)

  • Die Zufallsgröße \(Z\), die für eine Laplace-Münze die Anzahl des Auftretens von „Zahl" bei viermaligem Werfen beschreibt, hat ebenfalls den Erwartungswert 2 und es gilt analog \(P(Z = 2) = \frac{3}{8}\). Berechnen Sie die Varianz von \(Z\), vergleichen Sie diese mit der Varianz von \(Y\) und beschreiben Sie davon ausgehend einen qualitativen Unterschied der Wahrscheinlichkeitsverteilung von \(Z\) und \(Y\).

    (2 BE)

  • Beim Torwandschießen treten zwei Schützen gegeneinander an. Zunächst gibt der eine sechs Schüsse ab, anschließend der andere. Wer dabei mehr Treffer erzielt, hat gewonnen; andernfalls geht das Torwandschießen unentschieden aus.

    Joe trifft beim Torwandschießen bei jedem Schuss mit einer Wahrscheinlichkeit von 20 %, Hans mit einer Wahrscheinlichkeit von 30 %.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass Joe beim Torwandschießen gegen Hans gewinnt, wenn Hans bei seinen sechs Schüssen genau zwei Treffer erzielt hat. Erläutern Sie anhand einer konkreten Spielsituation, dass das dieser Aufgabe zugrunde gelegte mathematische Modell im Allgemeinen nicht der Realität entspricht.

    (4 BE)

  • Lisa erreichte im Training in 90 % aller Fälle bei sechs Schüssen mindestens einen Treffer. Bestimmen Sie die Wahrscheinlichkeit dafür, dass ihr erster Schuss im Wettbewerb ein Treffer ist, wenn man davon ausgeht, dass sich ihre Trefferquote im Vergleich zum Training nicht ändert. Legen Sie Ihrer Berechnung als Modell eine geeignete Bernoullikette zugrunde

    (4 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass die fünfte Familie die erste ist, die einen Bollerwagen ausleiht.

    (2 BE)

  • Vor dem Verpacken werden die verschiedenfarbigen Gummibärchen in großen Behältern gemischt, wobei der Anteil der roten Gummibärchen 25 % beträgt. Ein Verpackungsautomat füllt jeweils 50 Gummibärchen aus einem der großen Behälter in eine Tüte.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass in einer zufällig ausgewählten Tüte mehr als ein Drittel der Gummibärchen rot ist.

    (3 BE)

  • Um sicherzustellen, dass jeweils genau 50 Gummibärchen in eine Tüte gelangen, fallen diese einzeln nacheinander aus einer Öffnung des Behälters in den Verpackungsautomaten. Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem folgenden Term berechnet werden kann:

    \[\sum \limits_{k\,=\,0}^{3}(0{,}75^{k} \cdot 0{,}25)\]

    (2 BE)

  • Die vier Seiten eines regelmäßigen Tetraeders sind mit den Zahlen 1, 2, 3 und 4 durchnummeriert. Das Tetraeder wird fünfmal geworfen.

    Geben Sie im Sachzusammenhang ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term \(\left( \dfrac{3}{4} \right)^5\) berechnet werden kann, und begründen Sie Ihre Angabe. 

    (2 BE) 

  • In einen leeren Behälter werden drei Kugeln gelegt. Dabei wird die Farbe jeder Kugel durch Werfen eines Würfels festgelegt, dessen Seiten mit den Zahlen 1 bis 6 durchnummeriert sind: Wird die „1" oder die „2" erzielt, wird eine gelbe Kugel gewählt, sonst eine schwarze.

    Weisen Sie rechnerisch nach, dass die Wahrscheinlichkeit dafür, dass sich nun mindestens zwei schwarze Kugeln im Behälter befinden, \(\large{\frac{20}{27}}\) beträgt.

    (2 BE) 

  • Im Dezember 2021 wurden in Norwegen rund 14 000 Pkw neu zugelassen. In einer vereinfachten Übersicht sind die Anteile der verschiedenen Antriebsarten an diesen Neuzulassungen dargestellt.

    Tabelle Aufgabe 1 Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2023

    Für eine Untersuchung werden aus diesen Neuzulassungen 200 Fahrzeuge zufällig ausgewählt und deren Besitzer nach den Gründen für die Wahl der Antriebsart befragt. Da aus einer großen Anzahl von Fahrzeugen nur verhältnismäßig wenige ausgewählt werden, wird das Urnenmodell „Ziehen mit Zurücklegen" verwendet.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(D\): „Unter den ausgewählten Pkw befinden sich sieben oder acht Verbrenner mit Dieselmotor."

    \(E\): „Unter den ausgewählten Pkw befinden sich mehr als 135 mit rein elektrischem Antrieb."

    (4 BE) 

  • Die Zufallsgröße \(X\) beschreibt die Anzahl der Pkw mit Elektromotor unter den ausgewählten Fahrzeugen. Berechnen Sie den Erwartungswert und die Standardabweichung von \(X\).

    (2 BE) 

  • Die Sektoren des abgebildeten Glücksrads sind gleich groß und mit den Zahlen von 0 bis 9 durchnummeriert.

    Das Glücksrad wird zwanzigmal gedreht. Bestimmen Sie die Wahrscheinlichkeit der Ereignisse \(A\) und \(B\).

    \(A\): „Es wird genau siebenmal eine ungerade Zahl erzielt."

    \(B\): „Es wird mehr als siebenmal und höchstens zwölfmal eine ungerade Zahl erzielt."

    Glücksrad Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2023

    (3 BE) 

  • Mit dem Glücksrad wird ein Spiel durchgeführt. Jeder Spieler darf das Glücksrad beliebig oft drehen. Beendet er das Spiel selbst, bevor er eine „0" erzielt, so wird ihm die Summe der erzielten Zahlen in Euro ausgezahlt. Erzielt er eine „0", so ist das Spiel dadurch beendet und es erfolgt keine Auszahlung.

    Ein erster Spieler entscheidet sich vor dem Spiel dafür, das Glücksrad, sofern er keine „0" erzielt, viermal zu drehen und danach das Spiel zu beenden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass er eine Auszahlung erhält.

    (2 BE) 

Seite 1 von 2