Binomialverteilung

  • Die Bigband einer Schule nimmt anlässlich des 50-jährigen Jubiläums der Schule eine CD mit zehn Musikstücken auf; vier dieser Stücke sind kurz, sechs lang. Diese CD wird in großer Anzahl hergestellt.

    Bei der Jubiläumsfeier werden von einer dieser CDs in zufälliger Reihenfolge Stücke abgespielt, wobei jedes Stück mehrfach abgespielt werden kann.

    Berechnen Sie jeweils die Wahrscheinlichkeit dafür, dass sich unter zwölf abgespielten Stücken

    • genau fünf lange Stücke befinden.
    • mehr lange als kurze Stücke befinden.

    (4 BE)

  • Im Jahr 2020 wurden in Deutschland rund fünf Millionen Fahrräder verkauft. Dabei waren 40 % der verkauften Fahrräder Pedelecs (unterstützende Elektrofahrräder). Unter allen im Jahr 2020 verkauften Fahrrädern werden 200 zufällig ausgewählt. Die Zufallsgröße \(X\) beschreibt die Anzahl der Pedelecs unter den 200 zufällig ausgewählten Fahrrädern.

    Bestimmen Sie \(P(70 \leq X \leq 90)\) und beschreiben Sie die Bedeutung des Terms im Sachzusammenhang.

    (3 BE)

  • Der Anteil der Linkshänder in der Bevölkerung Deutschlands beträgt ein Sechstel. Aus der Bevölkerung werden acht Personen zufällig ausgewählt. Zwei der folgenden Terme I bis VI beschreiben die Wahrscheinlichkeit dafür, dass genau fünf dieser Personen Linkshänder sind. Geben Sie diese beiden Terme an.

    \[\textsf{I} \enspace \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)\]

    \[\textsf{II} \enspace \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{III} \enspace 1 - \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)^5\]

    \[\textsf{IV} \enspace \binom{8}{5} \cdot \left( \frac{5}{6} \right)^5 \cdot \left( \frac{1}{6} \right)^3\]

    \[\textsf{V} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{VI} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^3 \cdot \left( \frac{5}{6} \right)^5\]

    (2 BE)

  • Aus den neu zugelassenen Pkw mit Elektromotor werden 40 Fahrzeuge zufällig ausgewählt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich darunter genau zehn Plug-in-Hybride befinden.

    (3 BE) 

  • Beim Torwandschießen treten zwei Schützen gegeneinander an. Zunächst gibt der eine sechs Schüsse ab, anschließend der andere. Wer dabei mehr Treffer erzielt, hat gewonnen; andernfalls geht das Torwandschießen unentschieden aus.

    Joe trifft beim Torwandschießen bei jedem Schuss mit einer Wahrscheinlichkeit von 20 %, Hans mit einer Wahrscheinlichkeit von 30 %.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass Joe beim Torwandschießen gegen Hans gewinnt, wenn Hans bei seinen sechs Schüssen genau zwei Treffer erzielt hat. Erläutern Sie anhand einer konkreten Spielsituation, dass das dieser Aufgabe zugrunde gelegte mathematische Modell im Allgemeinen nicht der Realität entspricht.

    (4 BE)

  • Jeder sechste Besucher eines Volksfests trägt ein Lebkuchenherz um den Hals. Während der Dauer des Volksfests wird 25-mal ein Besucher zufällig ausgewählt. Die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Besucher, die ein Lebkuchenherz tragen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Besuchern höchstens ein Besucher ein Lebkuchenherz trägt.

    (2 BE)

  • Die Wahrscheinlichkeitsverteilungen von \(X\) und \(Y\) werden jeweils durch eines der folgenden Diagramme I, II und III dargestellt. Ordnen Sie \(X\) und \(Y\) jeweils dem passenden Diagramm zu und begründen Sie Ihre Zuordnung.

    Diagramm I Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    Diagramm II Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    Diagramm III Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    (3 BE)

  • Die Schulleitung fordert, den Vortest so zu gestalten, dass die Wahrscheinlichkeit dafür, den Vortest zu bestehen, für einen Bewerber, der nur rät, höchstens 3 % beträgt. Man entscheidet sich dafür, die Anzahl vorgelegter Schriftproben auf 30 festzulegen.

    Zeigen Sie, dass mit dieser Festlegung die Forderung der Schulleitung erfüllt ist.

    (3 BE)

  • Mithilfe der Graphologie werden aus der Handschrift einer Person Rückschlüsse auf deren Persönlichkeit gezogen.

    An einer Fachschule für Graphologie ist eine Dozentenstelle neu zu besetzen. Den Bewerbern sollen im Rahmen eines Vortests Schriftproben vorgelegt werden. Jede Schriftprobe stammt entweder von einer entscheidungsfreudigen oder von einer zögerlichen Person; dies soll dem jeweiligen Bewerber mitgeteilt werden, der sich anschließend bei jeder Schriftprobe entscheiden muss, ob er sie einer entscheidungsfreudigen oder einer zögerlichen Person zuordnet. Ein Bewerber soll den Vortest bestehen, wenn er sich bei mehr als zwei Dritteln der vorgelegten Schriftproben richtig entscheidet.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein Bewerber, der nur rät, den Vortest besteht, wenn man ihm zwölf Schriftproben vorlegen würde.

    (5 BE)

  • Um die Wirksamkeit eines Pflanzenschutzmittels gegen Pilzbefall nachzuweisen, wurden zahlreiche Versuche durchgeführt, bei denen landwirtschaftliche Nutzpflanzen zunächst mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht wurden. Im Mittel sind dabei 5 % der Pflanzen von Pilzen befallen worden.

    Bei einem weiteren solchen Versuch mit \(n\) Pflanzen beschreibt die Zufallsgröße \(X_n\) die Anzahl der Pflanzen, die von Pilzen befallen werden. Im Folgenden soll davon ausgegangen werden, dass \(X_n\) binomialverteilt ist mit den Parametern \(n\) und \(p = 0{,}05\).

    Es werden 15 Pflanzen mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht. Bestimmen Sie jeweils die Wahrscheinlichkeit folgender Ereignisse:

    \(E_1\): „Keine der Pflanzen wird von Pilzen befallen."

    \(E_2\): „Höchstens zwei Pflanzen werden von Pilzen befallen."

    \(E_3\): „12 oder 13 Pflanzen bleiben ohne Pilzbefall."

    (6 BE)

  • Nach einer aktuellen Erhebung leiden 25 % der Einwohner Deutschlands an einer Allergie. Aus den Einwohnern Deutschlands werden \(n\) Personen zufällig ausgewählt.

    Bestimmen Sie, wie groß \(n\) mindestens sein muss, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens eine der ausgewählten Personen an einer Allergie leidet.

    (4 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit durch den Term \(\sum \limits_{k\,=\,0}^{6} \left( B(6;0{,}2;k) \cdot B(6;0{,}3;k) \right)\) angegeben wird.

    (2 BE)

  • Bestimmen Sie unter Zuhilfenahme des Tafelwerks, wie viele Flaschen man mindestens öffnen muss, um mit einer Wahrscheinlichkeit von mehr als 5 % mindestens zwei Gewinnmarken zu finden.

    (4 BE)

  • Der Großhändler behauptet, dass sich die Wahrscheinlichkeit für das Keimen eines Samenkorns der Qualität B durch eine veränderte Aufbereitung des Saatguts auf mehr als 70 % erhöht hat. Deshalb soll die Nullhypothese „Die Wahrscheinlichkeit für das Keimen eines Samenkorns der Qualität B ist höchstens 70 %." auf einem Signifikanzniveau von 5 % getestet werden. Dazu werden 100 der verändert aufbereiteten Samenkörner der Qualität B zufällig ausgewählt und gesät. Bestimmen Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Das Unternehmen richtet ein Online-Portal zur Reservierung ein und vermutet, dass dadurch der Anteil der Personen mit Reservierung, die zur jeweiligen Fahrt nicht erscheinen, zunehmen könnte. Als Grundlage für die Entscheidung darüber, ob pro Fahrt künftig mehr als 64 Reservierungen zugelassen werden, soll die Nullhypothese „Die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, beträgt höchstens 10 %." mithilfe einer Stichprobe von 200 Personen mit Reservierung auf einem Signifikanzniveau von 5 % getestet werden. Vor der Durchführung des Tests wird festgelegt, die Anzahl der für eine Fahrt möglichen Reservierungen nur dann zu erhöhen, wenn die Nullhypothese aufgrund des Testergebnisses abgelehnt werden müsste.

    Ermitteln Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Bei Kindern besonders beliebt sind die 3D-Bilder, auf denen die Tiere dreidimensional erscheinen. 20 der 200 für ein Sammelalbum vorgesehenen Bilder sind 3D-Bilder.

    Ermitteln Sie, wie viele Päckchen ein Kind mindestens benötigt, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein 3D-Bild zu erhalten.

    (5 BE)

  • Bei der Wintersportart Biathlon wird bei jeder Schießanlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit \(p\) beschrieben.

    Geben Sie für die folgenden Ereignisse \(A\) und \(B\) jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von \(p\) beschreibt.

    \(A\): „Der Biathlet trifft bei genau vier Schüssen."

    \(B\): „Der Biathlet trifft nur bei den ersten beiden Schüssen."

    (3 BE)

Seite 1 von 4