Kombinatorik

  • Vor einer Schule stehen zehn Fahrräder nebeneinander; zwei davon sind Mountainbikes. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Mountainbikes unmittelbar nebeneinander stehen, wenn die Anordnung der Fahrräder zufällig erfolgte.

    (3 BE)

  • In Urne A befinden sich zwei rote und drei weiße Kugeln. Urne B enthält drei rote und zwei weiße Kugeln. Betrachtet wird folgendes Zufallsexperiment:

    Aus Urne A wird eine Kugel zufällig entnommen und in Urne B gelegt; danach wird aus Urne B eine Kugel zufällig entnommen und in Urne A gelegt.

    Geben Sie alle Möglichkeiten für den Inhalt der Urne A nach der Durchführung des Zufallsexperiments an.

    (2 BE)

  • In Urne A befinden sich zwei rote und drei weiße Kugeln. Urne B enthält drei rote und zwei weiße Kugeln. Betrachtet wird folgendes Zufallsexperiment:

    Aus Urne A wird eine Kugel zufällig entnommen und in Urne B gelegt; danach wird aus Urne B eine Kugel zufällig entnommen und in Urne A gelegt.

    Geben Sie alle Möglichkeiten für den Inhalt der Urne A nach der Durchführung des Zufallsexperiments an.

    (2 BE)

  • Ein Moderator lädt zu einer Talkshow drei Politiker, eine Journalistin und zwei Mitglieder einer Bürgerinitiative ein. Für die Diskussionsrunde ist eine halbkreisförmige Sitzordnung vorgesehen, bei der nach den Personen unterschieden wird und der Moderator den mittleren Platz einnimmt.

    Geben Sie einen Term an, mit dem die Anzahl der möglichen Sitzordnungen berechnet werden kann, wenn keine weiteren Einschränkungen berücksichtigt werden.

    (1 BE)

  • Der Sender hat festgestellt, dass unmittelbar neben dem Moderator auf einer Seite die Journalistin und auf der anderen Seite einer der Politiker sitzen soll. Berechnen Sie unter Berücksichtigung dieser weiteren Einschränkung die Anzahl der möglichen Sitzordnungen. 

    (4 BE)

  • Das Glücksrad wird viermal gedreht und die Abfolge der Farben als Ergebnis notiert. Bestimmen Sie die Anzahl der möglichen Ergebnisse, in denen die Farbe Blau nicht vorkommt.

    (2 BE)

  • In einem Parkhaus befinden sich insgesamt 100 Parkplätze.

    Im Parkhaus sind 20 Parkplätze frei; vier Autofahrer suchen jeweils einen Parkplatz. Formulieren Sie in diesem Sachzusammenhang zu den folgenden Termen jeweils eine Aufgabenstellung, deren Lösung sich durch den Term berechnen lässt.

    \[\sf{α)} \; 20 \cdot 19 \cdot 18 \cdot 17 \qquad \qquad \sf{β)} \; \binom{20}{4}\]

    (3 BE)

  • Gegeben sind grüne und rote Würfel, deren Seitenflächen unterschiedlich beschriftet sind und beim Werfen mit jeweils gleicher Wahrscheinlichkeit auftreten. Jeder grüne Würfel trägt auf fünf Seitenflächen die Augenzahl 1 und auf einer die Augenzahl 6. Jeder rote Würfel trägt auf jeweils zwei Seitenflächen die Augenzahlen 1, 3 bzw. 6.

    In einer Urne befinden sich drei grüne Würfel und zwei rote Würfel. Der Urne werden mit einem Griff zwei Würfel zufällig entnommen. Geben Sie einen Term an, mit dem man die Wahrscheinlichkeit dafür bestimmen kann, dass ein roter Würfel und ein grüner Würfel entnommen werden.

    (2 BE)

  • Das Laplace-Gymnasium veranstaltet auf dem Sportplatz ein Fußballturnier für die neuen 5. Klassen.

    An dem Turnier nehmen neun Mannschaften teil. Die Mannschaften bestehen jeweils aus Jungen und Mädchen, wobei zwei Drittel aller mitspielenden Kinder männlich sind.

    Die drei Spielführerinnen und die sechs Spielführer der Fußballmannschaften stellen sich in einer Reihe für ein Foto auf. Bestimmen Sie die Anzahl der Möglichkeiten für die Aufstellung der neun Kinder, wenn die drei Spielführerinnen nebeneinanderstehen sollen.

    (3 BE)

  • An einem Samstagvormittag kommen nacheinander vier Familien zum Eingangsbereich eines Freizeitparks. Jede der vier Familien bezahlt an einer der sechs Kassen, wobei davon ausgegangen werden soll, dass jede Kasse mit der gleichen Wahrscheinlichkeit gewählt wird. Beschreiben Sie im Sachzusammenhang zwei Ereignisse \(A\) und \(B\), deren Wahrscheinlichkeiten sich mit den folgenden Termen berechnen lassen:

    \[P(A) = \frac{6 \cdot 5 \cdot 4 \cdot 3}{6^{4}}; \enspace P(B) = \frac{6}{6^{4}}\]

    (3 BE)

  • Ermitteln Sie die Wahrscheinlichkeit dafür, dass an die ersten drei Personen drei unterschiedliche Beträge ausbezahlt werden, die in der Summe 12 € ergeben.

    (3 BE)

  • Geben Sie einen Term an, mit dem die Wahrscheinlichkeit dafür berechnet werden kann, dass jede Zahl mindestens einmal erzielt wird.

    (3 BE) 

  • Der Kurs Theater und Film eines Gymnasiums führt die Bühnenversion des Romans auf.

    Für die Premiere wird die Aula der Schule bestuhlt; in der ersten Reihe werden acht Plätze für Ehrengäste reserviert. Bestimmen Sie die Anzahl der Möglichkeiten, die die fünf erschienenen Ehrengäste haben, sich auf die reservierten Plätze zu verteilen, wenn

    α) die Personen nicht unterschieden werden;

    β) die Personen unterschieden werden.

    Nennen Sie im Sachzusammenhang einen möglichen Grund dafür, dass die möglichen Anordnungen der Ehrengäste auf den reservierten Plätzen nicht gleichwahrscheinlich sind - unabhängig davon, ob die Personen unterschieden werden oder nicht

    (4 BE)

  • Zehn Besucher des Gemeindefests drehen nacheinander jeweils einmal das Glücksrad. Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem sich die Wahrscheinlichkeit des Ereignisses berechnen lässt.

    \(A\): "Nur die ersten fünf Preise entfallen auf die Kategorie 4."

    \(B\): "Genau die Hälfte der Preise entfällt auf die Kategorie 4."

    \(C\): "Die Preise verteilen sich jeweils zur Hälfte auf die Kategorien 1 und 4."

    (5 BE)