Monotonietabelle

  • Abbildung Klausur Q11/2-005 Aufgabe5, modellhafter Verlauf einer Wasserrrutsche 

    Die Abbildung zeigt modellhaft den Verlauf einer Wasserrutsche, der näherungsweise durch die Funktion \(f \colon x \mapsto 0{,}01x^3 -0{,}3x^2 + 2{,}25x\) mit \(D_f = [0:14]\) beschrieben wird. Eine Längeneinheit im Koordinatensystem entspricht 0,5 m in der Realität.

    a) Bestimmen Sie die maximale Höhe der Rutsche durch Rechnung.

    b) Berechnen Sie das mittlere Gefälle der Rutsche im Intervall \([6;10]\).

    c) Beschreiben Sie die wesentlichen Schritte, um die steilste Stelle der Rutsche im Intervall \([5;14]\) rechnerisch zu ermitteln.

  • Aufgabe 1

    Bestimmen Sie die Ableitung der Funktion \(f\)mit \(f(x) = 0{,}5x^2 + 3x\) an der Stelle \(x = -2\) mithilfe des Differentialquotienten. Tipp: Verwenden Sie die h-Methode.

     

    Aufgabe 2

    Abbildung Aufgabe 5 Klausur Q11/2-005

    Die Abbildung zeigt den Graphen einer Funktion \(p\).

    a) Bestimmen Sie mithilfe der Abbildung die mittlere Änderungsrate von \(p\) im Intervall \([-2;2]\) und veranschaulichen Sie Ihre Vorgehensweise durch geeignete Eintragungen in die Abbildung. Entscheiden Sie, ob es im dargestellten Bereich des Graphen \(G_p\) ein Intervall gibt, in dem die mittlere Änderungsrate von \(p\) kleiner als null ist. Begründen Sie Ihre Entscheidung kurz.

    b) Erklären Sie die Bedeutung des Grenzwerts \(\lim \limits_{x\,\to\,-2}\dfrac{p(x) - p(-2)}{x + 2}\). Veranschaulichen Sie diesen in der Abbildung und bestimmen Sie damit näherungsweise den Grenzwert.

     

    Aufgabe 3

    Abbildung Aufgabe 3 Klausur Q11/2-005, Graph einer Funktion k

    Die Abbildung zeigt den Graphen \(G_k\) einer Funktion \(k\).

    a) Begründen Sie, dass \(k\) an der Stelle \(x = 6\) nicht differenzierbar ist, indem Sie mithilfe der Abbildung zugehörige Grenzwerte angeben und daraus schlussfolgern.

    b) Skizzieren Sie in der Abbildung den Graphen der Ableitungsfunktion \(k'\). Achten Sie auf ausreichende Genauigkeit.

     

    Aufgabe 4

    Die Tangente an den Graphen der Funktion \(f\) mit \(f(x) = 0{,}5x^2\) im Punkt \(P(2|f(2))\) und die Normale bilden mit der \(x\)-Achse das Dreieck \(PQR\).

    a) Veranschaulichen Sie den Sachverhalt in einer Skizze.

    b) Berechnen Sie den Flächeninhalt sowie die Innenwinkel des Dreiecks.

     

    Aufgabe 5

    Abbildung Klausur Q11/2-005 Aufgabe5, modellhafter Verlauf einer Wasserrrutsche 

    Die Abbildung zeigt modellhaft den Verlauf einer Wasserrutsche, der näherungsweise durch die Funktion \(f \colon x \mapsto 0{,}01x^3 -0{,}3x^2 + 2{,}25x\) mit \(D_f = [0:14]\) beschrieben wird. Eine Längeneinheit im Koordinatensystem entspricht 0,5 m in der Realität.

    a) Bestimmen Sie die maximale Höhe der Rutsche durch Rechnung.

    b) Berechnen Sie das mittlere Gefälle der Rutsche im Intervall \([6;10]\).

    c) Beschreiben Sie die wesentlichen Schritte, um die steilste Stelle der Rutsche im Intervall \([5;14]\) rechnerisch zu ermitteln.

     

    Aufgabe 6

    Die Graphen der Funktionen \(f \colon x \mapsto 0{,}5x^2 - 3x + 4\) und \(g \colon x \mapsto x^3 - x+1\) besitzen genau einen gemeinsamen Punkt. Berechnen Sie die \(x\)-Koordinate dieses Punktes mit dem Newton-Verfahren auf zwei Dezimalen genau. Wählen Sie als Startwert \(x_0 = 1\).

    (Zur Kontrolle: \(x\)-Koordinate des gemeinsamen Punktes: \(\approx 1{,}11617\))

  • Gegeben ist die Funktionenschar \(f_{k} \colon x \mapsto x \cdot \sqrt{k - 2x}\) mit \(k \in \mathbb R^{+}\).

     

    a) Geben Sie die maximale Definitionsmenge von \(f_{k}\) in Abhängigkeit des Parameters \(k\) an.

    b) Untersuchen Sie das Symmetrieverhalten der Kurvenschar von \(f_{k}\) bezüglich des Koordinatensystems.

    c) Untersuchen Sie das Verhalten von \(f_{k}\) an den Rändern des Definitionsbereichs.

    d) Weisen Sie nach, dass für die Ableitung von \(f_{k}\) gilt: \(f'_{k}(x) = \dfrac{k - 3x}{\sqrt{k - 2x}}\).

    Im Folgenden sei \(k = 4\). Der Graph der Funktion \(f_{4}\) wird mit \(G_{f_{4}}\) bezeichnet.

    e) Mithilfe des Ansatzes \(x = f_{4}(x)\) lässt sich der Schnittpunkt des Graphen \(G_{f_{4}}\) mit dem Graphen der Umkehrfunktion von \(f_{4}\) ermitteln. Beschreiben Sie die Idee dieses Ansatzes. Eine Berechnung ist nicht erforderlich!

    f) Untersuchen Sie das Monotonieverhalten von \(f_{4}\) unter Berücksichtigung des maximalen Definitionsbereichs und bestimmen Sie die Lage und Art des Extrempunkts von \(G_{f_{4}}\)

  • An der Decke eines Hausflurs ist eine Deckenleuchte angebracht. Die Randlinie des Lichtkegels der Deckenleuchte kann näherungsweise durch die Funktion \(\displaystyle f \colon x \mapsto -3 \cdot \left( e^{0{,}4x} + e^{-0{,}5x} \right) + 9\) beschrieben werden mit \(x\) und \(y\) in Metern (vgl. Abbildung). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    Abbildung zu Aufgabe 5 Klausur Q11 2 002

     

    a) Zeigen Sie, dass \(G_{f}\) nicht symmetrisch bezüglich des Koordinatensystems ist.

    b) Ersetzen Sie einen Zahl \((\neq 0)\) des Funktionsterms \(f(x)\) so, dass \(G_{f}\) symmetrisch ist und geben Sie die Art der Symmetrie an.

    Eine Feinjustierung der LEDs der Deckenleuchte verändert den Lichtkegel. Die Randlinie des veränderten Lichtkegels wird nun näherungsweise durch die Funktion \(g \colon x \mapsto -3 \cdot \left( e^{0{,}5x} + e^{-0{,}5x} \right) + 9\) beschrieben. Der Graph der Funktion \(g\) wird mit \(G_{g}\) bezeichnet.

    c) Bestimmen Sie die Schnittpunkte von \(G_{g}\) mit den Koordinatenachsen. Hinweis: Verwenden Sie die Substitution \(u = e^{0{,}5x}\) zur Bestimmung der Schnittpunkte mit der \(x\)-Achse.

    d) Berechnen Sie den Winkel, unter dem \(G_{g}\) die negative \(x\)-Achse schneidet.

    e) Die Position der Aufhängung der Deckenleuchte entspricht der Lage des Hochpunkts von \(G_{g}\). Die Aufhängung ist 85 cm von der Decke entfernt. Berechnen Sie die Raumhöhe \(h\) des Hausflurs, an dessen Decke die Deckenleuchte angebracht ist.

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

    c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

  • Aufgabe 1

    Gegeben ist die gebrochenrationale Funktion \(f \colon x \mapsto \dfrac{6 - x^{2}}{x^{2} - 9}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Bestimmen Sie die maximale Definitionsmenge \(D_{f}\) der Funktion \(f\).

    b) Berechnen Sie die Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen.

    c) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\).

    d) Untersuchen Sie das Verhalten von \(f\) an den Rändern von \(D_{f}\).

    e) Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    f) Skizzieren Sie \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

     

    Aufgabe 2

    Bilden Sie die erste Ableitung folgender Funktionen und vereinfachen Sie den Funktionsterm der Ableitung soweit wie möglich:

    a) \(f(x) = \dfrac{1}{x - 3}\)

    b) \(g(x) = -(x^{2} - 6x + 3) (x - 2)\)

     

    Aufgabe 3

    Abbildung zu Aufgabe 3 Klausur Q11/1-001

    Die Abbildung zeigt den Graphen der Ableitungsfunktion \(f'\) einer auf \(\mathbb R\) differenzierbaren Funktion \(f\).

    a) Geben Sie das Monotonieverhalten und die Extremstelle(n) von \(f\) an.

    b) Ermitteln Sie den Funktionsterm der Funktion \(f\), deren Graph \(G_{f}\) durch den Punkt \(P(1|-1)\) verläuft und skizzieren Sie \(G_{f}\).

     

    Aufgabe 4

    Geben Sie eine Stammfunktion der Funktion \(f \colon x \mapsto 3x^{2} + \dfrac{1}{x^{2}}\) an und erläutern Sie kurz, was man unter dem Begriff „Stammfunktion" versteht.

     

    Aufgabe 5

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{1}{32}x^{4} - \dfrac{1}{4}x^{2} + 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie das Symmetrieverhalten von \(f\).

    b) Untersuchen Sie das Verhalten von \(G_{f}\) für \(x \to -\infty\) und \(x \to +\infty\).

    c) Bestimmen Sie die Gleichung der Tangente \(T\) im Punkt \(P(1|f(1))\). 

    d) Berechnen Sie den Schnittpunkt \(S_{y}\) des Graphen der Funktion \(f\) mit der \(y\)-Achse.

    e) Bestimmen Sie rechnerisch Lage und Art aller Extrempunkte von \(G_{f}\).

    f) Zeichnen Sie \(G_{f}\) sowie die Tangente \(T\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

  • Abbildung zu Aufgabe 3 Klausur Q11/1-001

    Die Abbildung zeigt den Graphen der Ableitungsfunktion \(f'\) einer auf \(\mathbb R\) differenzierbaren Funktion \(f\).

    a) Geben Sie das Monotonieverhalten und die Extremstelle(n) von \(f\) an.

    b) Ermitteln Sie den Funktionsterm der Funktion \(f\), deren Graph \(G_{f}\) durch den Punkt \(P(1|-1)\) verläuft und skizzieren Sie \(G_{f}\).

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{1}{32}x^{4} - \dfrac{1}{4}x^{2} + 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie das Symmetrieverhalten von \(f\).

    b) Untersuchen Sie das Verhalten von \(G_{f}\) für \(x \to -\infty\) und \(x \to +\infty\).

    c) Bestimmen Sie die Gleichung der Tangente \(T\) im Punkt \(P(1|f(1))\).

    d) Berechnen Sie den Schnittpunkt \(S_{y}\) des Graphen der Funktion \(f\) mit der \(y\)-Achse.

    e) Bestimmen Sie rechnerisch Lage und Art aller Extrempunkte von \(G_{f}\).

    f) Zeichnen Sie \(G_{f}\) sowie die Tangente \(T\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto -\dfrac{1}{8}x^{3} + \dfrac{3}{2}x^{2} - \dfrac{9}{2}x\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    Untersuchen Sie das Monotonieverhalten der Funktion \(f\) und geben Sie die Lage und die Art der lokalen Extrempunkte von \(G_{f}\) an.

  • Aufgabe 1

    Berechnen Sie jeweils die erste Ableitung der folgenden Funktionen:

     

    a) \(f(x) = (3x + 2) \cdot \sqrt{\dfrac{1}{x} + 2}; \; x \neq 0\)

    b) \(g(x) = e^{\frac{\cos{x}}{x}}; \; x \neq 0\)

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto 2x^{2} \cdot \sin{x}\).

    Bestimmen Sie die Gleichung der Tangente \(T\) an den Graphen \(G_{f}\) der Funktion \(f\) an der Stelle \(x = \frac{\pi}{2}\).

     

    Aufgabe 3

    Gegeben ist die Funktionenschar \(f_{k} \colon x \mapsto x \cdot \sqrt{k - 2x}\) mit \(k \in \mathbb R^{+}\).

     

    a) Geben Sie die maximale Definitionsmenge von \(f_{k}\) in Abhängigkeit des Parameters \(k\) an.

    b) Untersuchen Sie das Symmetrieverhalten der Kurvenschar von \(f_{k}\) bezüglich des Koordinatensystems.

    c) Untersuchen Sie das Verhalten von \(f_{k}\) an den Rändern des Definitionsbereichs.

    d) Weisen Sie nach, dass für die Ableitung von \(f_{k}\) gilt: \(f'_{k}(x) = \dfrac{k - 3x}{\sqrt{k - 2x}}\).

    Im Folgenden sei \(k = 4\). Der Graph der Funktion \(f_{4}\) wird mit \(G_{f_{4}}\) bezeichnet.

    e) Mithilfe des Ansatzes \(x = f_{4}(x)\) lässt sich der Schnittpunkt des Graphen \(G_{f_{4}}\) mit dem Graphen der Umkehrfunktion von \(f_{4}\) ermitteln. Beschreiben Sie die Idee dieses Ansatzes. Eine Berechnung ist nicht erforderlich!

    f) Untersuchen Sie das Monotonieverhalten von \(f_{4}\) unter Berücksichtigung des maximalen Definitionsbereichs und bestimmen Sie die Lage und Art des Extrempunkts von \(G_{f_{4}}\).

     

    Aufgabe 4

    Gegeben sind die Punkte \(A(4|-2|-1)\), \(B(2|4|5)\) und \(C(5|-6|3)\).

     

    a) Ermitteln Sie die Größe des Innenwinkels \(\alpha\) des Dreiecks \(ABC\).

    b) Geben Sie die Gleichung der Kugel \(K\) mit dem Mittelpunkt \(C\) in Koordinatendarstellung an, auf deren Oberfläche der Punkt \(A\) liegt. Untersuchen Sie mithilfe der Kugelgleichung, ob der Punkt \(B\) innerhalb der Kugel \(K\), auf der Kugeloberfläche von \(K\) oder außerhalb von \(K\) liegt.

     

    Aufgabe 5

    Ein Unternehmen fertigt in großer Stückzahl ein elektronisches Bauteil. Bei der Herstellung können zwei Arten von Fehlern auftreten, ein elektrischer Fehler und ein optischer Fehler. Betrachtet werden folgende Ereignisse:

    \(E\): „Ein zufällig ausgewähltes Bauteil weist einen elektrischen Fehler auf."

    \(O\): „Ein zufällig ausgewähltes Bauteil weist einen optischen Fehler auf."

    Aus laufender Qualitätskontrolle ist bekannt, dass 5 % der gefertigten Bauteile einen elektrischen Fehler aufweisen. Zudem haben 3 % einen elektrischen, aber keinen optischen Fehler sowie 4 % einen optischen, aber keinen elektrischen Fehler.

     

    a) Beschreiben Sie das Ereignis \(\overline{E \cup O}\) im Sachzusammenhang.

    b) Erstellen Sie eine vollständig ausgefüllte Vierfeldertafel und geben Sie daraus an, mit welcher Wahrscheinlichkeit ein zufällig ausgewähltes Bauteil

    α) genau einen der beiden Fehler aufweist.

    β) höchstens einen der beiden Fehler aufweist.

    c) Untersuchen Sie die Ereignisse \(E\) und \(O\) auf Unabhängigkeit.

    d) Wie viele Bauteile müssen mindestens zufällig ausgewählt werden, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Bauteil zu erhalten, das einen elektrischen Fehler aufweist?

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{8x}{x^{2} + 4}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie den maximalen Definitionsbereich der Funktion \(f\) und ermitteln Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs. Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    c) Weisen Sie nach, dass der Graph \(G_{f}\) durch den Koordinatenursprung \(O(0|0)\) verläuft und berechnen Sie die Größe des Winkels, unter dem \(G_{f}\) die \(x\)-Achse schneidet.

    (Teilergebnis: \(f'(x) = -\dfrac{8(x^{2} - 4)}{(x^{2} + 4)^{2}}\))

    d) Bestimmen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

    e) Zeichnen Sie den Graphen \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

  • Gegeben ist die in \(\mathbb R\) definierte  Funktionenschar \(f_{a}(x) = x^{3} - ax + 3\) mit \(a \in \mathbb R\). Die Kurvenschar der Funktionenschar \(f_{a}\) wird mit \(G_{f_{a}}\) bezeichnet.

     

    Bestimmen Sie den Wert des Parameters \(a\) so, dass der zugehörige Graph der Kurvenschar \(G_{f_{a}}\)

    a) zwei Extrempunkte

    b) einen Terrassenpunkt

    besitzt.

  • Bestimmen Sie Lage und Art des Extrempunkts von \(G_{f}\).

    (3 BE)

  • Im Rahmen eines W-Seminars modellieren Schülerinnen und Schüler einen Tunnelquerschnitt, der senkrecht zum Tunnelverlauf liegt. Dazu beschreiben sie den Querschnitt der Tunnelwand durch den Graphen einer Funktion in einem Koordinatensystem. Der Querschnitt des Tunnelbodens liegt dabei auf der \(x\)-Achse, sein Mittelpunkt \(M\) im Ursprung des Koordinatensystems; eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität. Für den Tunnelquerschnitt sollen folgende Bedingungen gelten:

    I   Breite des Tunnelbodens: b = 10 m

    II  Höhe des Tunnels an der höchsten Stelle: h = 5 m

    III Der Tunnel ist auf einer Breite von mindestens 6 m mindestens 4 m hoch.

    Abbildung zu Teilaufgabe 1 - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    Eine erste Modellierung des Querschnitts der Tunnelwand verwendet die Funktion \(p \colon x \mapsto -0{,}2x^{2} + 5\) mit dem Definitionsbereich \(D_{p} = [-5;5]\).

    Zeigen Sie, dass die Bedingungen I und II in diesem Modell erfüllt sind. Berechnen Sie die Größe des spitzen Winkels, unter dem bei dieser Modellierung die linke Tunnelwand auf den Tunnelboden trifft.

    (6 BE)

  • Es gibt Punkte des Querschnitts der Tunnelwand, deren Abstand zu \(M\) minimal ist. Bestimmen Sie die \(x\)-Koordinaten der Punkte \(P_{x}\), für die \(d(x)\) minimal ist, und geben Sie davon ausgehend diesen minimalen Abstand an.

    (5 BE)

  • Untersuchen Sie das Monotonieverhalten von \(G_{h}\). Geben Sie den Grenzwert von \(h\) für \(x \to +\infty\) an und begründen Sie, dass \([-3;+\infty[\) die Wertemenge von \(h\) ist.

    (4 BE)

  • Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

    (Teilergebniss: \(x\)-Koordinate des Extrempunkts: \(\ln 4\))

    (4 BE)

  • Gegeben ist die in \(\mathbb R^{+}\) definierte Funktion \(f \colon x \mapsto 2 \cdot \left( \left( \ln{x} \right)^{2} - 1\right)\). Abbildung 1 zeigt den Graphen \(G_{f}\) von \(f\).

    Abbildung Aufgabe 1 Analysis 1 Mathematik Abitur Bayern 2018 BAbb. 1

    Zeigen Sie, dass \(x = e^{-1}\) und \(x = e\) die einzigen Nullstellen von \(f\) sind, und berechnen Sie die Koordinaten des Tiefpunkts \(T\) von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \frac{4}{x} \cdot \ln{x}\))

    (5 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{e^{2x}}{x}\) mit dem Definitionsbereich \(D_{f} = \mathbb R \backslash \{0\}\).

    Bestimmen Sie Lage und Art des Extrempunkts des Graphen von f.

    (5 BE)

Seite 1 von 2