Natürliche Logarithmusfunktion

  • Der Graph der Funktion \(f \colon x \mapsto \ln{x}\) und die Normale \(N\) im Punkt \(P(e|f(e))\) schließen im ersten Quadranten mit den Koordinatenachsen ein Flächenstück mit dem Flächeninhalt \(A\) ein.

    a) Skizzieren Sie den Graphen \(G_{f}\) der Funktion \(f\) sowie die Normale \(N\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\).

    b) Berechnen Sie den Flächeninhalt \(A\). Rechnen Sie mit exakten Werten.

  • Gegeben ist die Funktion \(f \colon x \mapsto 1 - (\ln{x})^{2}\). Die Funktion \(F \colon x \mapsto x(\ln{x} - 1)^{2}\) ist eine Stammfunktion der Funktion \(f\) (Nachweis nicht erforderlich!).

    Bestimmen Sie die untere Grenze \(a \in \mathbb R^{+}\) der in \(\mathbb R^{+}\) definierten Integralfunktion \(\displaystyle I \colon x \mapsto \int_{a}^{x} f(t) dt\) so, dass diese mit \(F(x)\) übereinstimmt.

  • Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

    Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

    a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

    b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

    c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

    d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

    e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

    Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

  • Aufgabe 1

    Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

    Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

    a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

    b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

    c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

    d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

    e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

    Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

     

    Aufgabe 2

    Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

    Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

     

    Aufgabe 3

    Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

    Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

    Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

     

    Aufgabe 4

    Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

    a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

    (mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

    b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

    c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

    d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

     

    Aufgabe 5

    Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

    Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

  • Berechnen Sie jeweils die Menge aller Stammfunktionen folgender Funktionen:

    a) \(f(x) = 2\sqrt{3 - 2x}\)

    b) \(g(x) = \ln{\left( x^{2} \right)}; \; x \in \mathbb R^{+}\)

    c) \(h(x) = \dfrac{x}{2} \cdot e^{3x^{2} + 4}\)

  • Gegeben ist die Funktion \(f \colon x \mapsto \ln{\left( -\dfrac{3}{x} \right)}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Bestimmen Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs \(D_{f}\).

    b) Zeigen Sie durch Rechnung, dass \(G_{f}\) in \(D_{f}\) linksgekrümmt ist.

  • Gegeben sind die folgenden Funktionen mit jeweils maximaler Definitionsmenge:

    \[p\,\colon x \mapsto \dfrac{1}{x - 1}\]

    \[q\,\colon x \mapsto \sqrt{x - 1}\]

    \[r\,\colon x \mapsto \ln (x - 1)\]

    Geben Sie jeweils die Definitionsmenge an und untersuchen Sie die Funktionen auf Nullstellen.

    (5 BE)

  • Betrachtet werden die folgenden Funktionsterme mit \(r,s \in \mathbb N\):

    \(e(x) = \sqrt{x - r} \qquad \qquad  \\ \)\(f(x) = \ln x \qquad \qquad \\ \)\(\displaystyle g(x) = -\frac{1}{x} + s\)

    Jeder der Terme beschreibt genau einen der folgenden Funktionsgraphen I,II und III. Ordnen Sie die Terme den Graphen zu und geben Sie die Werte der Parameter \(r\) und \(s\) an; begründen Sie jeweils Ihre Antwort.

    Graph I

    Graph II

    Graph III

    (5 BE)

  • Bestimmen Sie das Verhalten von \(A(s)\) für \(s \to +\infty\).

    (2 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \left(x^3 - 8 \right) \cdot (2 + \ln x)\) mit maximalem Definitionsbereich D.

    Geben Sie D an.

    (1 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \ln(2x + 3)\) mit maximaler Definitionsmenge \(D\) und Wertemenge \(W\). Der Graph von \(g\) wird mit \(G_{g}\) bezeichnet.

    Geben Sie \(D\) und \(W\) an.

    (2 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \ln{(2 - x^{2})}\) mit maximaler Definitionsmenge \(D_{g}\).

    Skizzieren Sie die Parabel mit der Gleichung \(y = 2 - x^{2}\) in einem Koordinatensystem und geben Sie \(D_{g}\) an.

    (3 BE)

  • Ermitteln Sie \(s\) so, dass das Flächenstück aus Aufgabe 1e den Inhalt 100 besitzt.

    (3 BE)

  • Beschreiben Sie, wie \(G_{f}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}\) definierten Funktion \(x \mapsto \ln{x}\) hervorgeht. Erklären Sie damit das Monotonieverhalten von \(G_{f}\).

    (5 BE)

  • Ermitteln Sie diejenige Stelle \(x \in D\), für die \(f'(x) = 2\) gilt.

    (3 BE) 

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{\ln{x}}{x^{2}}\) mit maximalem Definitionsbereich \(D\).

    Geben Sie \(D\) sowie die Nullstelle von \(f\) an und bestimmen Sie \(\lim \limits_{x \, \to \, 0} f(x)\).

    (3 BE)

  • Geben Sie jeweils den Term einer Funktion an, die über ihrer maximalen Definitionsmenge die angegebenen Eigenschaften besitzt.

    Der Graph der Funktion \(f\) ist achsensymmetrisch zur \(y\)-Achse und die Gerade mit der Gleichung \(x = 2\) ist eine senkrechte Asymptote.

    (2 BE)

  • Gegeben ist die in \(\mathbb R^{+}\) definierte Funktion \(h \colon x \mapsto 3x \cdot (-1 + \ln x)\).

    Abbildung 1 zeigt den Graphen \(G_{h}\) von \(h\) im Bereich \(0{,}75 \leq x \leq 4\).

    Abbildung 1 Aufgabe 1 Analysis 1 Mathematik Abitur Bayern 2017 B

    Bestimmen Sie die Gleichung der Tangente an \(G_{h}\) im Punkt \((e|0)\) und berechnen Sie die Größe des Winkels, unter dem diese Tangente die \(x\)-Achse schneidet.

    (zur Kontrolle: \(h'(x) = 3 \cdot \ln x\))

    (4 BE)

Seite 1 von 2