Nullstelle(n) einer Funktionenschar

  • Aufgabe 1

    Berechnen Sie folgende Integrale bzw. die Integrationsgrenze \(a\) mit \(a \in \mathbb N\). Geben Sie exakte Werte an.

    a) \(\displaystyle \int_{0}^{1} \frac{-6x^{2} + 6}{x^{3} - 3x + 3} dx\)

    b) \(\displaystyle \int_{-a}^{3a} (3t - 2) dt = 4\)

     

    c) \(\displaystyle \int_{1}^{\infty} \frac{3}{x^{2}} dx\)

    d) \(\displaystyle \int_{4}^{8} \left( e^{-2x} -\sin\left(\frac{\pi}{4}x\right) +\frac{2}{x-2} \right) dx\)

     

    Aufgabe 2

    Geben sie jeweils eine Integrandenfunktion \(f(x)\) und \(g(x)\) an, sodass die folgenden Gleichungen erfüllt sind.

    a) \(\displaystyle \int_{-a}^{+a} f(x) dx = 0; \; a \neq 0\)

    b) \(\displaystyle \int_{-1}^{3} g(x) dx = 8\)

     

    Aufgabe 3

    Gegeben sind die jeweils in \(\mathbb R\) definierten Funktionenscharen \(f_{a} \colon x \mapsto x(a^{2} - x^{2})\) und \(g_{a} \colon x \mapsto x(x - a)^{2}\) mit \(a \in \mathbb R^{+}\).

     

    a) Bestimmen Sie in Abhängigkeit des Parameters \(a\) den Flächeninhalt \(A(a)\) der Fläche, welche die Graphen der Funktionenscharen \(f\) und \(g\) begrenzen.

    b) Für welchen Wert des Parameters \(a\) ergibt sich der Flächeninhalt 13,5 FE (Flächeneinheiten)?

     

    Aufgabe 4

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \dfrac{1}{20}x^{5} + \dfrac{1}{12}x^{4} - \dfrac{1}{3}x^{3}\).

     

    Bestimmen Sie die Wendepunkte des Graphen \(G_{f}\) der Funktion \(f\) und geben Sie das Kümmungsverhalten von \(G_{f}\) an.

     

    Aufgabe 5

    Abbildung zu Klausur Q12/1 001 Aufgabe 5

    Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(R\) definierten Funktion \(f\).

     

    a) Skizzieren Sie den Graphen \(G_{F}\) der Integralfunktion \(F \colon x \mapsto \displaystyle \int_{0}^{x} f(t) dt\) in die Abbildung. Gehen Sie dabei insbesondere auf die Nullstellen und die Extremstelle von \(G_{f}\) sowie auf das Verhalten von \(G_{f}\) für \(x \to \pm \infty\) ein. Erläutern Sie Ihre Vorgehensweise.

    b) „Jede Stammfunktion der abgebildeten Funktion \(f\) ist eine Integralfunktion." Nehmen Sie zu dieser Aussage begründend Stellung, indem Sie sich auf \(G_{F}\) beziehen.

  • Gegeben sind die jeweils in \(\mathbb R\) definierten Funktionenscharen \(f_{a} \colon x \mapsto x(a^{2} - x^{2})\) und \(g_{a} \colon x \mapsto x(x - a)^{2}\) mit \(a \in \mathbb R^{+}\).

     

    a) Bestimmen Sie in Abhängigkeit des Parameters \(a\) den Flächeninhalt \(A(a)\) der Fläche, welche die Graphen der Funktionenscharen \(f\) und \(g\) begrenzen.

    b) Für welchen Wert des Parameters \(a\) ergibt sich der Flächeninhalt 13,5 FE (Flächeneinheiten)?

  • Begründen Sie: Wenn \(a = 0\) und \(b \neq 0\) gilt, dann ist der Graph von \(f_{a,b,c}\) symmetrisch bezüglich der \(y\)-Achse und schneidet die \(x\)-Achse nicht. 

    (2 BE)

  • Betrachtet wird nun die Schar der in \(\mathbb R\) definierten Funktionen \(h_{k} \colon x \mapsto (1 - kx^{2}) \cdot e^{-x}\) mit \(k \in \mathbb R\). Der Graph von \(h_{k}\) wird mit \(G_{k}\) bezeichnet. Für \(k = 1\) ergibt sich die bisher betrachtetet Funktion \(f\).

    Geben Sie in Abhängigkeit von \(k\) die Anzahl der Nullstellen von \(h_{k}\) an.

    (2 BE)

  • Betrachtet wird die Tangente an den Graphen von \(f_a\) im Punkt \((0|f_a (0))\). Bestimmen Sie diejenigen Werte von \(a\), für die diese Tangente eine positive Steigung hat und zudem die \(x\)-Achse in einem Punkt schneidet, dessen \(x\)-Koordinate größer als \(\dfrac{1}{2}\) ist.

    (4 BE)

  • Betrachtet wird die Tangente an den Graphen von \(f_a\) im Punkt \((0|f_a (0))\). Bestimmen Sie diejenigen Werte von \(a\), für die diese Tangente eine positive Steigung hat und zudem die \(x\)-Achse in einem Punkt schneidet, dessen \(x\)-Koordinate größer als \(\dfrac{1}{2}\) ist.

    (4 BE)

  • Die Anzahl der Nullstellen von \(g_c\) hängt von \(c\) ab. Geben Sie jeweils einen möglichen Wert von \(c\) an, sodass gilt:

    α) \(g_c\) hat keine Nullstelle.

    β) \(g_c\) hat genau eine Nullstelle.

    γ) \(g_c\) hat genau zwei Nullstellen.

    (3 BE)