Stochastik 2

  • Von den im einleitenden Text angegebenen Zahlenwerten soll nur der Prozentsatz 40 % so geändert werden, dass die Ereignisse \(A\) und \(R\) unabhängig sind. Geben Sie den geänderten Wert an.

    (2 BE)

  • Begründen Sie, dass die Ereignisse \(A\) und \(R\) abhängig sind.

    (2 BE)

  • Erstellen Sie zu der beschriebenen Situation ein vollständig beschriftetes Baumdiagramm oder eine vollständig ausgefüllte Vierfeldertafel.

    (4 BE)

  • Man liest gelegentlich, eine nach rechts geneigte Handschrift weise darauf hin, dass die zugehörige Person aufgeschlossen ist. In einem Unternehmen mit 50 Angestellten gelten 35 als aufgeschlossen. 40 % der als aufgeschlossen geltenden Angestellten haben eine Handschrift, die nicht nach rechts geneigt ist. Sechs Angestellte, die nicht als aufgeschlossen gelten, haben eine nach rechts geneigte Handschrift.

    Betrachtet werden folgende Ereignisse:

    \(A\,\colon\;\)„Ein zufällig ausgewählter Angestellter gilt als aufgeschlossen."

    \(R\,\colon \;\)„Ein zufällig ausgewählter Angestellter hat eine nach rechts geneigte Handschrift."

    Beschreiben Sie das Ereignis \(\overline{A \cap R}\) im Sachzusammenhang.

    (2 BE)

  • Beschreiben Sie die Bedeutung des Terms \(1 - P_{\overline{V}}(R)\) im Sachzusammenhang.

    (2 BE)

  • Das Glücksrad wird zweimal gedreht. Untersuchen Sie, ob die Ereignisse \(C\) und \(D\) stochastisch unabhängig sind.

    \(C\): „Die Summe der erzielten Zahlen ist kleiner als 4."

    \(D\): „Das Produkt der erzielten Zahlen ist 2 oder 3."

    (5 BE) 

  • Beschreiben Sie im Sachzusammenhang die Bedeutung des Terms \(1 - P(X \geq 275)\), wobei \(X\) eine binomial verteilte Zufallsgröße mit den Parametern \(n = 300\) und \(p = 0{,}95\) bezeichnet.

    (2 BE)

  • Gegeben ist die Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4;5\}\). Die Wahrscheinlichkeitsverteilung von \(X\) ist symmetrisch, d. h. es gilt \(P(X = 0) = P(X = 5)\), \(P(X = 1) = P(X = 4)\), \(P(X = 2) = P(X = 3)\).

    Die Tabelle zeigt die Wahrscheinlichkeitswerte \(P(X \leq k)\) für \(k \in \{0; 1; 2\}\).

    Tabelle Aufgabe a,b Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Tragen Sie die fehlenden Werte in die Tabelle ein.

    (2 BE)

  • Einem Jungen fehlen in seinem Sammelalbum noch 15 Bilder. Er geht mit seiner Mutter zum Einkaufen und erhält anschließend zwei Päckchen mit Tierbildern. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Päckchen nur Bilder enthalten, die der Junge bereits in seinem Sammelalbum hat.

    (3 BE)

  • In einem Supermarkt erhalten Kunden abhängig vom Wert ihres Einkaufs eine bestimmte Anzahl von Päckchen mit Tierbildern, die in ein Sammelalbum eingeklebt werden können. Jedes Päckchen enthält fünf Bilder. Im Sammelalbum sind Plätze für insgesamt 200 verschiedene Bilder vorgesehen. Die Bilder werden jeweils in großer Stückzahl mit der gleichen Häufigkeit produziert und auf die Päckchen zufällig verteilt, wobei sich die Bilder in einem Päckchen nicht unterscheiden müssen.

    Begründen Sie, dass der Term \(\dfrac{200 \cdot 199 \cdot 198 \cdot 197 \cdot 196}{200^5}\) die Wahrscheinlichkeit dafür beschreibt, dass sich in einem Päckchen fünf verschiedene Tierbilder befinden.

    (2 BE)

  • Das Zufallsexperiment wird zweimal durchgeführt. Dabei wird jeweils der Wert der Zufallsgröße \(X\) notiert. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe dieser beiden Werte negativ ist. 

    (3 BE)

  • Das Baumdiagramm in Abbildung 2 gehört zu einem Zufallsexperiment mit den stochastisch unabhängigen Ereignissen \(A\) und \(B\). Bestimmen Sie die Wahrscheinlichkeit des Ereignisses \(B\).

    Abbildung 2 Aufgabe 3 Stochastik 2 Mathematik Abitur Bayern 2019 AAbb. 2

     

    (3 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit durch den folgenden Term berechnet werden kann.

    \[\dfrac{\displaystyle \binom{14}{4} - \binom{6}{4}}{\displaystyle \binom{14}{4}}\]

    (2 BE)

  • Im Folgenden ist \(n = 200\). Die Zufallsgröße \(X\) beschreibt die Anzahl der Personen unter den ausgewählten Personen, die an einer Allergie leiden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der binomialverteilten Zufallsgröße \(X\) höchstens um eine Standardabweichung von ihrem Erwartungswert abweicht.

    (5 BE)

  • Ermitteln Sie, wie viele Spiele durchgeführt werden müssen, damit der Erwartungswert der Einnahme für die beiden Aktionen 300 € beträgt.

    (4 BE)

  • Die Zufallsgröße \(X\) beschreibt die Summe der beiden erzielten Zahlen. Bestimmen Sie, für welchen Wert von \(p\) die Zufallsgröße \(X\) den Erwartungswert 3 hat.

    (4 BE)

  • Ein Unternehmen lässt im Rahmen von Bewerbungsverfahren graphologische Gutachten zu den Personen erstellen, die sich um eine Stelle bewerben. Im Mittel werden 25 % der Bewerber aufgrund ihres graphologischen Gutachtens abgewiesen. Für eine Stelle bewerben sich 20 Personen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Anzahl derjenigen Bewerber, die aufgrund ihres graphologischen Gutachtens abgelehnt werden, kleiner als die dafür im Mittel zu erwartende Anzahl ist.

    (3 BE)

  • Der Vortest kann als einseitiger Hypothesentest mit einem Signifikanzniveau von 3 % gedeutet werden. Geben Sie dazu die Nullhypothese sowie den Ablehnungsbereich an.

    (2 BE)

  • Für ein Zufallsexperiment wird eine Zufallsgröße \(X\) festgelegt, welche die drei Werte -2, 1 und 2 annehmen kann. In der Abbildung ist die Wahrscheinlichkeitsverteilung von \(X\) dargestellt.

    Ermitteln Sie mithilfe der Abbildung den Erwartungswert der Zufallsgröße \(X\).

    Abbildung zu Teilaufgabe 2 Stochastik 2 Prüfungsteil A Mathematik Abitur Bayern 2015

     

    (2 BE)

  • Die Kunststoffteile werden aus Kunststoffgranulat hergestellt. Nach einem Wechsel des Granulats vermutet der Produktionsleiter, dass sich der Anteil der fehlerhaften Teile reduziert hat. Um einen Anhaltspunkt dafür zu gewinnen, ob die Vermutung gerechtfertigt ist, soll die Nullhypothese „Der Anteil der fehlerhaften Teile beträgt mindestens 4 %." auf der Grundlage einer Stichprobe von 200 Teilen auf einem Signifikanzniveau von 5 % getestet werden.

    Bestimmen sie die zugehörige Entscheidungsregel.

    (4 BE)