Stochastisches Tafelwerk

  • Zwei Seitenflächen eines Laplace-Würfels sind rot, drei sind gelb und eine Seitenfläche ist blau.

    Wie viele Würfe sind mindestens nötig, um mit einer Wahrscheinlichkeit von mindestens 60 % mindestens dreimal die Farbe Rot zu erhalten.

  • Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

    Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

    Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

  • Zwei Drittel der Senioren in Deutschland besitzen ein Mobiltelefon. Bei einer Talkshow zum Thema „Chancen und Risiken der digitalen Welt" sitzen 30 Senioren im Publikum.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter 30 zufällig ausgewählten Senioren in Deutschland mindestens 17 und höchstens 23 ein Mobiltelefon besitzen.

    (3 BE)

  • Bestimmen Sie unter Zuhilfenahme des Tafelwerks, wie viele Flaschen man mindestens öffnen muss, um mit einer Wahrscheinlichkeit von mehr als 5 % mindestens zwei Gewinnmarken zu finden.

    (4 BE)

  • In der Abbildung ist die Wahrscheinlichkeitsverteilung einer Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4\}\) und dem Erwartungswert \(2\) dargestellt. Weisen Sie nach, dass es sich dabei nicht um eine Binomialverteilung handeln kann.

    Abbildung Teilaufgabe 2 Stochastik 1 Mathematik Abitur Bayern 2017 A

     

    (3 BE)

  • Das elektronische Stabilitätsprogramm (ESP) eines Autos kann Schleuderbewegungen und damit Unfälle verhindern.

    Gehen Sie bei den folgenden Aufgaben davon aus, dass 40 % aller Autos mit ESP ausgerüstet sind.

    200 Autos werden nacheinander zufällig ausgewählt; die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Autos mit ESP.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass von den ausgewählten Autos mindestens 70 mit ESP ausgerüstet sind.

    (3 BE)

  • Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse.

    \(A\): „Das fünfte ausgewählte Auto ist das erste mit ESP."

    \(B\): „Die Zufallsgröße \(X\) nimmt einen Wert an, der von ihrem Erwartungswert höchstens um eine Standardabweichung abweicht."

    (7 BE)

  • Der Anbaubetrieb sät 200 Samenkörner der Qualität B. Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(E\): „Von den gesäten Samenkörnern keimen genau 140."

    \(F\): „Von den gesäten Samenkörnern keimen mehr als 130 und weniger als 150."

    (3 BE)

  • Der Großhändler behauptet, dass sich die Wahrscheinlichkeit für das Keimen eines Samenkorns der Qualität B durch eine veränderte Aufbereitung des Saatguts auf mehr als 70 % erhöht hat. Deshalb soll die Nullhypothese „Die Wahrscheinlichkeit für das Keimen eines Samenkorns der Qualität B ist höchstens 70 %." auf einem Signifikanzniveau von 5 % getestet werden. Dazu werden 100 der verändert aufbereiteten Samenkörner der Qualität B zufällig ausgewählt und gesät. Bestimmen Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Ein Unternehmen stellt Kunststoffteile her. Erfahrungsgemäß sind 4 % der hergestellten Teile fehlerhaft. Die Anzahl fehlerhafter Teile unter zufällig ausgewählten kann als binomialverteilt angenommen werden.

    50 Kunststoffteile werden zufällig ausgewählt. Bestimmen Sie für die folgenden Ereignisse jeweils die Wahrscheinlichkeit:

    \(A\):  „Genau zwei der Teile sind fehlerhaft."

    \(B\):  „Mindestens 6 % der Teile sind fehlerhaft."

    (3 BE)

  • Die Kunststoffteile werden aus Kunststoffgranulat hergestellt. Nach einem Wechsel des Granulats vermutet der Produktionsleiter, dass sich der Anteil der fehlerhaften Teile reduziert hat. Um einen Anhaltspunkt dafür zu gewinnen, ob die Vermutung gerechtfertigt ist, soll die Nullhypothese „Der Anteil der fehlerhaften Teile beträgt mindestens 4 %." auf der Grundlage einer Stichprobe von 200 Teilen auf einem Signifikanzniveau von 5 % getestet werden.

    Bestimmen sie die zugehörige Entscheidungsregel.

    (4 BE)

  • Das Unternehmen richtet ein Online-Portal zur Reservierung ein und vermutet, dass dadurch der Anteil der Personen mit Reservierung, die zur jeweiligen Fahrt nicht erscheinen, zunehmen könnte. Als Grundlage für die Entscheidung darüber, ob pro Fahrt künftig mehr als 64 Reservierungen zugelassen werden, soll die Nullhypothese „Die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, beträgt höchstens 10 %." mithilfe einer Stichprobe von 200 Personen mit Reservierung auf einem Signifikanzniveau von 5 % getestet werden. Vor der Durchführung des Tests wird festgelegt, die Anzahl der für eine Fahrt möglichen Reservierungen nur dann zu erhöhen, wenn die Nullhypothese aufgrund des Testergebnisses abgelehnt werden müsste.

    Ermitteln Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Jeder sechste Besucher eines Volksfests trägt ein Lebkuchenherz um den Hals. Während der Dauer des Volksfests wird 25-mal ein Besucher zufällig ausgewählt. Die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Besucher, die ein Lebkuchenherz tragen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Besuchern höchstens ein Besucher ein Lebkuchenherz trägt.

    (2 BE)

  • Die Inhaberin der Losbude beschäftigt einen Angestellten, der Besucher des Volksfests anspricht, um diese zum Kauf von Losen zu animieren. Sie ist mit der Erfolgsquote des Angestellten unzufrieden.

    Die Inhaberin möchte dem Angestellten das Gehalt kürzen, wenn weniger als 15 % der angesprochenen Besucher Lose kaufen. Die Entscheidung über die Gehaltskürzung soll mithilfe eines Signifikanztests auf der Grundlage von 100 angesprochenen Besuchern getroffen werden. Dabei soll möglichst vermieden werden, dem Angestellten das Gehalt zu Unrecht zu kürzen. Geben Sie die entsprechende Nullhypothese an und ermitteln Sie die zugehörige Entscheidungsregel auf dem Signifikanzniveau von 10 %.

    (5 BE)

  • Ein Telekommunikationsunternehmen möchte neue Kunden gewinnen. Dazu schickt es an zufällig ausgewählte Haushalte Werbematerial. Im Folgenden soll davon ausgegangen werden, dass die angeschriebenen Haushalte unabhängig voneinander mit einer Wahrscheinlichkeit von jeweils 20 % noch nicht über einen schnellen Internetanschluss verfügen.

    Ermitteln Sie jeweils die Wahrscheinlichkeit dafür, dass unter 10 angeschriebenen Haushalten

    ● mindestens zwei noch nicht über einen schnellen Internetanschluss verfügen.

    ● genau acht bereits über einen schnellen Internetanschluss verfügen.

    (4 BE)

  • Beim Torwandschießen treten zwei Schützen gegeneinander an. Zunächst gibt der eine sechs Schüsse ab, anschließend der andere. Wer dabei mehr Treffer erzielt, hat gewonnen; andernfalls geht das Torwandschießen unentschieden aus.

    Joe trifft beim Torwandschießen bei jedem Schuss mit einer Wahrscheinlichkeit von 20 %, Hans mit einer Wahrscheinlichkeit von 30 %.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass Joe beim Torwandschießen gegen Hans gewinnt, wenn Hans bei seinen sechs Schüssen genau zwei Treffer erzielt hat. Erläutern Sie anhand einer konkreten Spielsituation, dass das dieser Aufgabe zugrunde gelegte mathematische Modell im Allgemeinen nicht der Realität entspricht.

    (4 BE)

  • Im Eingangsbereich des Freizeitparks können Bollerwagen ausgeliehen werden. Erfahrungsgemäß nutzen 15 % der Familien dieses Angebot. Die Zufallsgröße \(X\) beschreibt die Anzahl der Bollerwagen, die von den ersten 200 Familien, die an einem Tag den Freizeitpark betreten, entliehen werden. Im Folgenden wird davon ausgegangen, dass eine Familie höchstens einen Bollerwagen ausleiht und dass die Zufallsgröße \(X\) binomialverteilt ist.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass mindestens 25 Bollerwaagen ausgeliehen werden. 

    (2 BE)

  • Ermitteln Sie unter Zuhilfenahme des Tafelwerks den kleinsten symmetrischen um den Erwartungswert liegenden Bereich, in dem die Werte der Zufallsgröße \(X\) mit einer Wahrscheinlichkeit von mindestens 75 % liegen.

    (5 BE)

  • Um die Wirksamkeit eines Pflanzenschutzmittels gegen Pilzbefall nachzuweisen, wurden zahlreiche Versuche durchgeführt, bei denen landwirtschaftliche Nutzpflanzen zunächst mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht wurden. Im Mittel sind dabei 5 % der Pflanzen von Pilzen befallen worden.

    Bei einem weiteren solchen Versuch mit \(n\) Pflanzen beschreibt die Zufallsgröße \(X_n\) die Anzahl der Pflanzen, die von Pilzen befallen werden. Im Folgenden soll davon ausgegangen werden, dass \(X_n\) binomialverteilt ist mit den Parametern \(n\) und \(p = 0{,}05\).

    Es werden 15 Pflanzen mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht. Bestimmen Sie jeweils die Wahrscheinlichkeit folgender Ereignisse:

    \(E_1\): „Keine der Pflanzen wird von Pilzen befallen."

    \(E_2\): „Höchstens zwei Pflanzen werden von Pilzen befallen."

    \(E_3\): „12 oder 13 Pflanzen bleiben ohne Pilzbefall."

    (6 BE)

  • Bei jeder Aufführung wird der Vorhang 15-mal geschlossen; dafür ist ein automatischer Mechanismus vorgesehen. Erfahrungsgemäß funktioniert der Mechanismus bei jedem Schließen des Vorhangs mit einer Wahrscheinlichkeit von 90 %. Nur dann, wenn der Mechanismus nicht funktioniert, wird der Vorhang von Hand zugezogen.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(A\,\): "Bei einer Aufführung wird der Vorhang kein einziges Mal von Hand zugezogen."

    \(B\,\): "Bei einer Aufführung lässt sich der Vorhang zunächst viermal automatisch schließen, insgesamt wird der Vorhang jedoch genau zweimal von Hand zugezogen."

    (5 BE)

Seite 1 von 2