Wertemenge / Wertebereich

  • Geben Sie jeweils den Funktionsterm einer Funktion an, die folgende Eigenschaften besitzt:

    1. Die Funktion \(f\) besitzt die Wertemenge \([-2;2]\) und \(x = -\frac{\pi}{2}\) sowie \(x = \frac{\pi}{2}\) sind zwei Nullstellen von \(f\).
    2. Die Funktion \(g\) divergiert für \(x \to -\infty\) gegen \(+\infty\) und konvergiert für \(x \to +\infty\) gegen \(+3\).
    3. Der Graph der Funktion \(h\) ist punktsymmetrisch zum Koordinatenursprung. Er besitzt die Nullstelle \(x = 2\) und es gilt: \(\lim \limits_{x\, \to\, -\infty}h(x) = +\infty\).
  • Aufgabe 1

    Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\) und \(g\). Der Graph der Funktion \(f\) ist achsensymmetrisch zur \(y\)-Achse und der Graph der Funktion \(g\) ist punktsymmetrisch zum Koordinatenursprung.

    Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion \(h \colon x \mapsto f(x) \cdot \left[ g(x) \right]^4\) bezüglich des Koordinatensystems.

     

    Aufgabe 2

    Geben Sie jeweils den Funktionsterm einer Funktion an, die folgende Eigenschaften besitzt:

    1. Die Funktion \(f\) besitzt die Wertemenge \([-2;2]\) und \(x = -\frac{\pi}{2}\) sowie \(x = \frac{\pi}{2}\) sind zwei Nullstellen von \(f\).
    2. Die Funktion \(g\) divergiert für \(x \to -\infty\) gegen \(+\infty\) und konvergiert für \(x \to +\infty\) gegen \(+3\).
    3. Der Graph der Funktion \(h\) ist punktsymmetrisch zum Koordinatenursprung. Er besitzt die Nullstelle \(x = 2\) und es gilt: \(\lim \limits_{x\, \to\, -\infty}h(x) = +\infty\).

     

    Aufgabe 3

    Abbildung zu Klausur 11/1-G902

    1. Beschreiben Sie mithilfe der Abbildung, wie der Graph von \(g\) aus dem Graphen von \(f\) hervorgeht. Geben Sie einen Funktionsterm von \(g\) an, indem Sie \(g\) durch \(f\) ausdrücken.
    2. Beschreiben Sie, wie der Graph der in \(\mathbb R\) definierten Funktion \(p\colon x \mapsto 4x^2 +8x +4\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(q\colon x \mapsto x^2\) hervorgeht.

     

    Aufgabe 4

    Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto 2^x + 3x + 4\) und \(g \colon x \mapsto 2^{x+1} + 6x -2\).

    Zeigen Sie, dass der Graph der Funktion \(g\) aus dem Graphen der Funktion \(f\) durch

    1. eine Streckung in \(y\)-Richtung mit dem Faktor \(2\) und
    2. eine Verschiebung in \(y\)-Richtung um \(-10\)

    hervorgeht. Begründen Sie, dass die Reihenfolge der Schritte von Bedeutung ist.

     

    Aufgabe 5

    Gegeben ist die Funktion \(h\) mit

    \[h \colon x \mapsto \begin{cases} \begin{align*} -2^{-x+1}+3 \enspace \text{für} \enspace x &\leq 2 \\[0.8em] \sin{(x-1)+0{,}5} \enspace \text{für} \enspace x &>2\end{align*} \end{cases}\]

    auf ihrem maximalen Definitionsbereich \(D_h = \mathbb R\).

    Untersuchen Sie die Funktion \(h\) auf Stetigkeit.

     

    Aufgabe 6

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{2x^2 - 8}{x^2 + x}\) mit maximaler Definitionsmenge \(D_f\).

    1. Bestimmen Sie \(D_f\) sowie die Nullstelle(n) von \(f\) und geben Sie die Gleichung(en) der senkrechten Asymptote(n) des Graphen von \(f\) an.
    2. Begründen Sie, dass \(y = 2\) die Gleichung der waagerechten Asymptote des Graphen von \(f\) ist.

     

    Aufgabe 7

    Geben Sie den Term einer gebrochenrationalen Funktion \(f\) an,

    1. deren Graph die senkrechten Asymptoten mit den Gleichungen \(x = -2\) und \(x = 3\), die doppelte Nullstelle \(x = 1\) sowie die waagrechte Asymptote mit der Gleichung \(y = 0\) besitzt.
    2. die in \(\mathbb R\) definiert ist und deren Graph die waagrechte Asymptote mit der Gleichung \(y = 1\) besitzt sowie die \(y\)-Achse bei \(3\) schneidet.

     

    Aufgabe 8

    Begründen oder widerlegen Sie folgende Aussage:

    Wenn der Graph \(G_f\) einer gebrochenrationalen Funktion \(f\) punktsymmetrisch zum Koordinatenursprung ist, so hat \(f\) mindestens zwei Definitionslücken.

  • Abbildung zu Aufgabe 2 Klausur Q11/2-002

    Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 4 - 2e^{x - 4}\).

     

    a) Geben Sie die Definitionsmenge der Funktion \(f\) an. Bestimmen Sie das Verhalten an den Rändern des Definitionsbereichs. Geben Sie die Wertemenge der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist.

    c) Berechnen Sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an. Skizzieren Sie den Graphen der Umkehrfunktion \(f^{-1}\) in das obige Koordinatensystem.

  • Gegeben ist die Funktion \(f\colon x \mapsto 2(e^{x} - 1)^{2}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Geben Sie die Definitionsmenge der Funktion \(f\) an.

    b) Ermitteln Sie das Verhalten von \(f\) für \(x \to -\infty\) und \(x \to +\infty\). Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    c) Weisen Sie nach, dass der Koordinatenursprung absoluter Tiefpunkt von \(G_{f}\) ist. Geben Sie die Wertemenge der Funktion \(f\) an.

  • Aufgabe 1

    Bestimmen Sie jeweils die erste Ableitung der folgenden Funktionen, ohne anschließend zu vereinfachen.

     

    a) \(f(x) = 2\sqrt{x} \cdot \cos(0{,}5x)\)

    b) \(g(x) = \dfrac{\ln\left(\dfrac{1}{x^{3}}\right)}{2x + 3}\)

     

    Aufgabe 2

    Abbildung zu Aufgabe 2 Klausur Q11/2-002

    Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 4 - 2e^{x - 4}\).

     

    a) Geben Sie die Definitionsmenge der Funktion \(f\) an. Bestimmen Sie das Verhalten an den Rändern des Definitionsbereichs. Geben Sie die Wertemenge der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist.

    c) Berechnen Sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an. Skizzieren Sie den Graphen der Umkehrfunktion \(f^{-1}\) in das obige Koordinatensystem.

     

    Aufgabe 3

    Gegeben ist die Funktion \(f\colon x \mapsto 2(e^{x} - 1)^{2}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Geben Sie die Definitionsmenge der Funktion \(f\) an.

    b) Ermitteln Sie das Verhalten von \(f\) für \(x \to -\infty\) und \(x \to +\infty\). Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    c) Weisen Sie nach, dass der Koordinatenursprung absoluter Tiefpunkt von \(G_{f}\) ist. Geben Sie die Wertemenge der Funktion \(f\) an.

     

    Aufgabe 4

    Einer der folgenden Graphen gehört zu der in \(\mathbb R\) definierten Funktion \(f \colon x \mapsto \dfrac{x + 3}{e^{x}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    Geben Sie an, welcher der Graphen I, II oder III den Graphen \(G_{f}\) zeigt und begründen Sie jeweils, warum die beiden anderen Graphen nicht in Frage kommen. 

    Abbildung zu Aufgabe 4 Klausur Q11 2 002

     

    Aufgabe 5

    An der Decke eines Hausflurs ist eine Deckenleuchte angebracht. Die Randlinie des Lichtkegels der Deckenleuchte kann näherungsweise durch die Funktion \(\displaystyle f \colon x \mapsto -3 \cdot \left( e^{0{,}4x} + e^{-0{,}5x} \right) + 9\) beschrieben werden mit \(x\) und \(y\) in Metern (vgl. Abbildung). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    Abbildung zu Aufgabe 5 Klausur Q11 2 002

     

    a) Zeigen Sie, dass \(G_{f}\) nicht symmetrisch bezüglich des Koordinatensystems ist.

    b) Ersetzen Sie einen Zahl \((\neq 0)\) des Funktionsterms \(f(x)\) so, dass \(G_{f}\) symmetrisch ist und geben Sie die Art der Symmetrie an.

    Eine Feinjustierung der LEDs der Deckenleuchte verändert den Lichtkegel. Die Randlinie des Lichtkegels wird nun näherungsweise durch die Funktion \(g \colon x \mapsto -3 \cdot \left( e^{0{,}5x} + e^{-0{,}5x} \right) + 9\) beschrieben. Der Graph der Funktion \(g\) wird mit \(G_{g}\) bezeichnet.

    c) Bestimmen Sie die Schnittpunkte von \(G_{g}\) mit den Koordinatenachsen. Hinweis: Verwenden Sie die Substitution \(u = e^{0{,}5x}\) zur Bestimmung der Schnittpunkte mit der \(x\)-Achse.

    d) Berechnen Sie den Winkel, unter dem \(G_{g}\) die negative \(x\)-Achse schneidet.

    e) Die Position der Aufhängung der Deckenleuchte entspricht der Lage des Hochpunkts von \(G_{g}\). Die Aufhängung ist 85 cm von der Decke entfernt. Berechnen Sie die Raumhöhe \(h\) des Hausflurs, an dessen Decke die Deckenleuchte angebracht ist.

     

    Aufgabe 6

    Der Punkt \(A(4|-1|0)\) ist Mittelpunkt der Kugel \(K\), auf deren Oberfläche der Punkt \(B(-1|1|4)\) liegt. 

    Ermitteln Sie die Koordinaten eines weiteren Punktes \(C\), der ebenfalls auf der Kugeloberfläche liegt.

  • Aufgabe 1

    Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{8 - 2x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie die maximale Definitionsbemenge \(D_{f}\) sowie die Wertemenge \(W_{f}\) der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist. Bestimmen Sie den Funktionsterm \(f^{-1}(x)\). Geben Sie die Definitions- und die Wertemenge der Umkehrfunktion \(f^{-1}\) an.

    c) Der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{f^{-1}}\) der Umkehrfunktion \(f^{-1}\) schließen im ersten Quadranten mit den Koordinatenachsen ein herzförmiges Flächenstück mit dem Flächeninhalt \(A\) ein.

    Zeichnen Sie \(G_{f}\) sowie \(G_{f^{-1}}\) mithilfe der Funktionswerte \(f(0)\), \(f(2)\), \(f(3{,}5)\) und \(f(4)\) im ersten Quadranten eines gemeinsamen Koordinatensystems. Achten Sie dabei insbesondere auf den Verlauf von \(G_{f}\) an der Stelle \(x = 4\). Schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Berechnen Sie den Flächeninhalt \(A\).

     

    Aufgabe 2

    Geben Sie jeweils eine Gleichung der Gerade \(g\) an, für die gilt:

    a) Die Gerade \(g\) ist eine Ursprungsgerade und der Punkt \(P(1|3|4)\) liegt auf \(g\).

    b) Die Gerade \(g\) verläuft parallel zur \(x_{2}\)-Achse durch den Punkt \(Q(-2|2|0)\).

    c) Die Gerade \(g\) verläuft parallel zur \(x_{1}x_{3}\)-Ebene durch den Punkt \(R(-2{,}5|1|1)\).

    d) Die Gerade \(g\) verläuft durch die Punkte \(S(3|2|-1)\) und \(T(6|4|0)\).

     

    Aufgabe 3

    Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{u}\) und \(h \colon \overrightarrow{X} = \overrightarrow{B} + \mu \cdot \overrightarrow{v}\) mit \(\lambda, \mu \in \mathbb R\). Entscheiden Sie ob die folgenden Aussagen wahr oder falsch sind. Begründen Sie Ihre Entscheidung kurz.

    a) Gilt \(\overrightarrow{u} = k \cdot \overrightarrow{v}; \; k \in \mathbb R\), so verlaufen die Geraden \(g\) und \(h\) parallel zueinander.

    b) Gilt \(\overrightarrow{u} \circ \overrightarrow{v} = 0\), so schneiden sich die Geraden \(g\) und \(h\) rechtwinklig.

     

    Aufgabe 4

    Untersuchen Sie, ob die Punkte \(A(3|1|0)\), \(B(2|-1|-2)\), \(C(-2|1|-2)\) und \(D(4|3|-4)\) in einer Ebene liegen. 

     

    Aufgabe 5

    Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{8 - 2x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie die maximale Definitionsbemenge \(D_{f}\) sowie die Wertemenge \(W_{f}\) der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist. Bestimmen Sie den Funktionsterm \(f^{-1}(x)\). Geben Sie die Definitions- und die Wertemenge der Umkehrfunktion \(f^{-1}\) an.

    c) Der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{f^{-1}}\) der Umkehrfunktion \(f^{-1}\) schließen im ersten Quadranten mit den Koordinatenachsen ein herzförmiges Flächenstück mit dem Flächeninhalt \(A\) ein.

    Zeichnen Sie \(G_{f}\) sowie \(G_{f^{-1}}\) mithilfe der Funktionswerte \(f(0)\), \(f(2)\), \(f(3{,}5)\) und \(f(4)\) im ersten Quadranten eines gemeinsamen Koordinatensystems. Achten Sie dabei insbesondere auf den Verlauf von \(G_{f}\) an der Stelle \(x = 4\). Schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Berechnen Sie den Flächeninhalt \(A\).

  • Betrachtet wird die Schar der in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = x \cdot e^{ax}\) und \(a \in \mathbb R \backslash\{0\}\). Für jeden Wert von \(a\) besitzt die Funktion \(f_a\) genau eine Extremstelle.

    Begründen Sie, dass der Graph von \(f_a\) für \(x<0\) unterhalb der \(x\)-Achse verläuft.

    (2 BE)

  • Erläutern Sie, dass die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto 4 - e^x\) den Wertebereich \(]-\infty;4[\) besitzt.

    (2 BE)

  • Gegeben ist die in \(\mathbb R \backslash \{0\}\) definierte Funktion \(g \colon x \mapsto \dfrac{1}{x^2} - 1\).

    Geben Sie eine Gleichung der waagrechten Asymptote des Graphen von \(g\) sowie die Wertemenge von \(g\) an.

    (2 BE) 

  • Der Graph der Funktion \(g^{*}\) geht aus \(G_{g}\) durch Strecken und Verschieben hervor. Die Wertemenge von \(g^{*}\) ist \(]-1;1[\). Geben Sie einen möglichen Funktionsterm für \(g^{*}\) an.

    (2 BE)

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(g \colon x \mapsto \dfrac{e^{x}}{e^{x} + 1}\). Ihr Graph wird mit \(G_{g}\) bezeichnet.

    Zeigen Sie, dass \(g\) streng monoton zunehmen ist und die Wertemenge \(]0;1[\) besitzt.

    (zur Kontrolle: \(g'(x) = \dfrac{e^{x}}{(e^{x} + 1)^{2}}\))

    (5 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(W\) hat.

    \[W =\; ]3;+\infty[\]

    (2 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(W\) hat.

    \[W =\; ]-\infty;1]\]

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto \ln{\left( \dfrac{1}{x^{2} + 1} \right)}\). Begründen Sie, dass die Wertemenge von \(h\) das Intervall \(]-\infty;0]\) ist.

    (3 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(g_{a,c} \, \colon x \mapsto \sin (ax) + c\) mit \(a,c \in \mathbb R^+_0\).

    Geben Sie für jede der beiden folgenden Eigenschaften einen möglichen Wert für \(a\) und einen möglichen Wert für \(c\) so an, dass die zugehörige Funktion \(g_{a,c}\) diese Eigenschaft besitzt.

    α) Die Funktion\(g_{a,c}\) hat die Wertemenge \([0;2]\).

    β) Die Funktion \(g_{a,c}\) hat im Intervall \([0;\pi]\) genau drei Nullstellen.

    (3 BE)

  • Geben Sie das Monotonieverhalten von \(G_f\) und die Wertemenge von \(f\) an.

    (2 BE)

  • Untersuchen Sie das Monotonieverhalten von \(G_{h}\). Geben Sie den Grenzwert von \(h\) für \(x \to +\infty\) an und begründen Sie, dass \([-3;+\infty[\) die Wertemenge von \(h\) ist.

    (4 BE)

  • Beschreiben Sie, wie \(G_{g}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}_{0}\) definierten Funktion \(w \colon x \mapsto \sqrt{x}\) hervorgeht, und geben Sie die Wertemenge von \(g\) an.

    (4 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto e^{\frac{1}{2}x} + e^{-\frac{1}{2}x}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet.

    Bestimmen Sie die Koordinaten des Schnittpunkts von \(G_{f}\) mit der \(y\)-Achse und begründen Sie, dass \(G_{f}\) oberhalb der \(x\)-Achse verläuft.

    (2 BE)

Seite 1 von 2