Ableitung einer Potenzfunktion

  • Aufgabe 1

    Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an und bestimmen Sie jeweils die Nullstelle(n). Bilden Sie jeweils die Ableitungsfunktion und vereinfachen Sie soweit wie möglich.

    a) \(f(x) = 2\ln{(3\sqrt{x})}\)

    b) \(g(x) = xe^{4 - 3x} + \dfrac{x^{2}}{e^{3x - 4}}\)

    c) \(h(x) = x^{3} \cdot \sin{\left( \dfrac{\pi}{3}x \right)}\)

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \ln{\left( -\dfrac{3}{x} \right)}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Bestimmen Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs \(D_{f}\).

    b) Zeigen Sie durch Rechnung, dass \(G_{f}\) in \(D_{f}\) linksgekrümmt ist.

     

    Aufgabe 3

    Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 2\sqrt{6 - x}\) mit dem Definitionsbereich \(D_{f} = [0;6]\). Der Punkt \(P(x|f(x))\), der Lotfußpunkt \(L(x|0)\) des Lotes von \(P\) auf die \(x\)-Achse und der Koordinatenursprung \(O\) legen das Dreieck \(OLP\) fest.

    Bestimmen Sie die Koordinaten des Punktes \(P\), sodass der Flächeninhalt \(A\) des Dreiecks \(OLP\) maximal ist.

    Abbildung zu Klausur Q11/2-004 Aufgabe 3

     

    Aufgabe 4

    Gegeben sind die Kugel \(K_{1}\) mit dem Mittelpunkt \(M_{1}(-3|5|8)\) und dem Radius \(r_{1} = 3\) sowie die Kugel \(K_{2}\) mit dem Mittelpunkt \(M_{2}(7|-5|3)\) und dem Radius \(r_{2} = 7\).

    Untersuchen Sie die gegenseitige Lage der Kugeln \(K_{1}\) und \(K_{2}\) und berechnen Sie ggf. den Abstand der beiden Kugeln.

     

    Aufgabe 5

    Bei der Herstellung wiederaufladbarer Batterien treten zwei Fehler auf.

    \(A\): Die Abmessung der Batterie weicht von der Typennorm ab.

    \(L\): Die Ladekapazität der Batterie liegt 20 % unter dem Sollwert.

    Laut Qualitätskontrolle weisen 15 % der Batterien den Fehler \(L\) auf und 5 % den Fehler \(A\). Die Wahrscheinlichkeit, dass mindestens einer der beiden Fehler auftritt, wird mit 17 % angegeben.

    a) Beschreiben Sie folgende Ereignisse im Sachzusammenhang:

    α) \(\overline{\overline{A} \cap \overline{L}}\)

    β) \((A \cap \overline{L}) \cup (\overline{A} \cap L)\)

    b) Erstellen Sie eine den Sachverhalt beschreibende vollständig ausgefüllte Vierfeldertaffel.

    c) Zeigen Sie dass die Ereignisse \(A\) und \(L\) stochastisch abhängig sind.

    d) Erstellen Sie ein vollständig ausgefülltes Baumdiagramm, beginnend mit dem Ereignis \(A\). Beschreiben Sie, woran sich die stochastische Abhängigkeit der Ereignisse \(A\) und \(L\) an diesem Baumdiagramm erkennen lässt.

  • a) Berechnen Sie die Ableitung folgender Funktionen mithilfe der Ableitungsregeln ohne anschließend zu vereinfachen.

     

    α) \(f(x) = 3x^{4} - \dfrac{3}{x} + 6\)

    β) \(g(x) = (2x - 3)(x^{2} - t)\)

    γ) \(h(x) = \dfrac{3x - 5}{3 - x^{3}}\)

     

    b) Bestimmen Sie eine Stammfunktion der Funktion \(f \colon x \mapsto 3x^{4} + \dfrac{3}{x^{3}} - 4\).

  • Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an und bestimmen Sie jeweils die Nullstelle(n). Bilden Sie jeweils die Ableitungsfunktion und vereinfachen Sie soweit wie möglich.

    a) \(f(x) = 2\ln{(3\sqrt{x})}\)

    b) \(g(x) = xe^{4 - 3x} + \dfrac{x^{2}}{e^{3x - 4}}\)

    c) \(h(x) = x^{3} \cdot \sin{\left( \dfrac{\pi}{3}x \right)}\)

  • Ermitteln Sie den Zeitpunkt nach Beginn der Messung, zu dem die momentane Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft \(-30\frac{\textsf{1}}{\textsf{h}}\) beträgt.

    (2 BE)

  • Dem Flächenstück, das \(G_h\) mit der \(x\)-Achse vollständig einschließt, werden Rechtecke so einbeschrieben, dass jeweils eine Seite des Rechtecks auf der \(x\)-Achse liegt. Berechnen Sie den größtmöglichen Flächeninhalt \(A\) eines solchen Rechtecks.

    (Ergebnis: \(A = \frac{16}{9}\sqrt{3}\))

    (6 BE)

  • Ermitteln Sie den Zeitpunkt nach Beginn der Messung, zu dem die momentane Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft \(-30\frac{\textsf{1}}{\textsf{h}}\) beträgt.

    (2 BE)

  • Bestimmen Sie die \(x\)-Koordinate von \(W_{k}\) in Abhängigkeit von \(k\).

    (zur Kontrolle: \(x = -\frac{1}{k} - 1\))

    (3 BE)

  • Bestimmen Sie die Gleichung der Tangente an den Graphen von \(g\) im Punkt \((8|g(8))\).

    (4 BE)

  • Zeigen Sie, dass \(F \colon x \mapsto 3x - (x - 1) \cdot \ln{(x - 1)}\) mit Definitionsbereich \(D_{f} = \; ]1; +\infty[\) eine Stammfunktion von \(f\) ist, und bestimmen Sie den Term der Stammfunktion von \(f\), die bei \(x = 2\) eine Nullstelle hat.

    (4 BE)

  • Bestimmen Sie rechnerisch die \(x\)-Koordinaten der beiden Extrempunkte von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = (x^{2} - 2x - 1) \cdot e^{-x}\))

    (4 BE)

  • Gegeben ist die in \(\mathbb R^{+}\) definierte Funktion \(h \colon x \mapsto 3x \cdot (-1 + \ln x)\).

    Abbildung 1 zeigt den Graphen \(G_{h}\) von \(h\) im Bereich \(0{,}75 \leq x \leq 4\).

    Abbildung 1 Aufgabe 1 Analysis 1 Mathematik Abitur Bayern 2017 B

    Bestimmen Sie die Gleichung der Tangente an \(G_{h}\) im Punkt \((e|0)\) und berechnen Sie die Größe des Winkels, unter dem diese Tangente die \(x\)-Achse schneidet.

    (zur Kontrolle: \(h'(x) = 3 \cdot \ln x\))

    (4 BE)

  • Für jeden Wert \(s > 0\) legen die Punkte \((0|1)\), \((s|1)\), \((s|f(s))\) und \((0|f(s))\) ein Rechteck mit dem Flächeninhalt \(R(s)\) fest.

    Zeichnen Sie dieses Rechteck für \(s = 5\) in die Abbildung 1 ein.
    Zeigen Sie, dass \(R(s)\) für einen bestimmten Wert von \(s\) maximal ist, und geben Sie diesen Wert von \(s\) an.

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

    (zur Kontrolle: \(R(s) = 7s \cdot e^{-0{,}2s}\))

    (7 BE)

  • Es gibt einen Wert von \(c\), für den der Flächeninhalt \(A(c)\) des Rechtecks \(PQRS\) maximal ist. Berechnen Sie diesen Wert von \(c\).

    (4 BE) 

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

  • Ermitteln Sie die Gleichung der Tangente an \(G_h\) im Punkt \((-2|h(-2))\). Berechnen Sie den Wert, den das Modell für die Größe des Winkels liefert, den die Blattränder an der Blattspitze einschließen.

    (6 BE)

  • In einem Koordinatensystem (vgl. Abbildung 1) werden alle Rechtecke betrachtet, die folgende Bedingungen erfüllen:

    • Zwei Seiten liegen auf den Koordinatenachsen.

    • Ein Eckpunkt liegt auf dem Graphen \(G_f\) der Funktion \(f \, \colon x \mapsto -\ln x\) mit \(0 < x < 1\).

    Abbildung 1 zeigt ein solches Rechteck.

    Abbildung 1 zu Teilaufgabe 4Abb. 1

    Unter den betrachteten Rechtecken gibt es eines mit größtem Flächeninhalt. Berechnen Sie die Seitenlängen dieses Rechtecks.

    (5 BE)

  • Zeigen Sie, dass die in \(\mathbb R\) definierte Funktion \(F\) mit \(F(x) = x^2 \cdot e^x\) eine Stammfunktion von \(f\) ist. Geben eine Gleichung einer weiteren Stammfunktion \(G\) von \(f\) an, für die \(G(1) = 2e\) gilt.

    (3 BE)

  • Untersuchen Sie rechnerisch das Monotonieverhalten von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \dfrac{4x}{(x^{2} + 1)^{2}}\))

    (4 BE)

  • Zeigen Sie, dass es einen Wert von \(k > 0\) gibt, für den \(A(k)\) maximal ist. Berechnen Sie diesen Wert von \(k\) sowie den Flächeninhalt des zugehörigen Dreiecks \(P_{k}Q_{k}R\).

    (6 BE)