Ableitung einer Potenzfunktion

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

  • Der Graph \(G_f\) besitzt in genau einem Punkt eine waagrechte Tangente. Bestimmen Sie die Koordinaten dieses Punkts und begründen Sie, dass es sich um einen Hochpunkt handelt.

    (zur Kontrolle: \(f'(x) = \dfrac{10 - 2x}{\sqrt{10x - x^2}}\); \(y\)-Koordinate des Hochpunkts: \(10\))

    (5 BE)

  • Gegeben ist die Funktion \(h \colon x \mapsto \ln{(2x - 3)}\) mit Definitionsmenge \(D_h = \; ]\frac{3}{2};+\infty[\). Geben Sie die Nullstelle von \(h\) sowie einen Term der ersten Ableitungsfunktion von \(h\) an.

    (2 BE)

  • Zeigen Sie, dass der Graph von \(g\) in genau einem Punkt eine waagrechte Tangente besitzt.

    (3 BE)

  • Es gibt einen Wert von \(c\), für den der Flächeninhalt \(A(c)\) des Rechtecks \(PQRS\) maximal ist. Berechnen Sie diesen Wert von \(c\).

    (4 BE) 

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto x^{2} + 4\) und \(g_{m} \colon x \mapsto m \cdot x\) mit \(m \in \mathbb R\). Der Graph von \(f\) wird mit \(G_{f}\) und der Graph von \(g_{m}\) mit \(G_{m}\) bezeichnet.

    Skizzieren Sie \(G_{f}\) in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen \(G_{f}\) und \(G_{4}\).

    (3 BE)

  • Untersuchen Sie rechnerisch das Monotonieverhalten von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \dfrac{4x}{(x^{2} + 1)^{2}}\))

    (4 BE)

  • Bestimmen Sie Lage und Art des Extrempunkts von \(G_{f}\).

    (4 BE)

  • Für jeden Wert \(s > 0\) legen die Punkte \((0|1)\), \((s|1)\), \((s|f(s))\) und \((0|f(s))\) ein Rechteck mit dem Flächeninhalt \(R(s)\) fest.

    Zeichnen Sie dieses Rechteck für \(s = 5\) in die Abbildung 1 ein.
    Zeigen Sie, dass \(R(s)\) für einen bestimmten Wert von \(s\) maximal ist, und geben Sie diesen Wert von \(s\) an.

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

    (zur Kontrolle: \(R(s) = 7s \cdot e^{-0{,}2s}\))

    (7 BE)

  • Dem Flächenstück, das \(G_h\) mit der \(x\)-Achse vollständig einschließt, werden Rechtecke so einbeschrieben, dass jeweils eine Seite des Rechtecks auf der \(x\)-Achse liegt. Berechnen Sie den größtmöglichen Flächeninhalt \(A\) eines solchen Rechtecks.

    (Ergebnis: \(A = \frac{16}{9}\sqrt{3}\))

    (6 BE)

  • Zeigen Sie, dass für die erste Ableitung der Funktion \(I_T\) gilt:

    \[I'_T(x) = \frac{x^2 \cdot e^{\frac{x}{T}} \cdot \left [ 3 \cdot \left (1 - e^{-\frac{x}{T}} \right ) - \frac{x}{T} \right ]}{\left ( e^{\frac{x}{T}} - 1 \right )^2}\]

    Vergleichen Sie diesen Term mit dem der Funktion \(f\) aus Aufgabe 1 und begründen Sie, dass die Funktion \(I_T\) bei \(x = a \cdot T\) ihr einziges Maximum besitzt, wenn \(a\) die positive Nullstelle von \(f\) ist.

    (6 BE)

  • Eine Radarstation, deren Position im Modell durch den Punkt \(R\,(20|30|0)\) veranschaulicht wird, erfasst alle Objekte im Luftraum bis zu einer Entfernung von 50 km. Berechnen Sie die Länge der Flugstrecke von \(F_2\) in dem vom Radar erfassten Bereich.

    (6 BE)

  • Zeigen Sie, dass es einen Wert von \(k > 0\) gibt, für den \(A(k)\) maximal ist. Berechnen Sie diesen Wert von \(k\) sowie den Flächeninhalt des zugehörigen Dreiecks \(P_{k}Q_{k}R\).

    (6 BE)

  • Gegeben ist die Funktion \(\displaystyle f \, \colon x \mapsto \frac{x}{\ln x}\) mit Definitionsmenge \(\mathbb R^+ \, \backslash \{1\}\). Bestimmen Sie Lage und Art des Extrempunkts des Graphen von \(f\).

    (5 BE)

  • Zeigen Sie, dass die in \(\mathbb R\) definierte Funktion \(F\) mit \(F(x) = x^2 \cdot e^x\) eine Stammfunktion von \(f\) ist. Geben eine Gleichung einer weiteren Stammfunktion \(G\) von \(f\) an, für die \(G(1) = 2e\) gilt.

    (3 BE)

  • Zeigen Sie, dass die in \(\mathbb R\) definierte Funktion \(F\) mit \(F(x) = x^2 \cdot e^x\) eine Stammfunktion von \(f\) ist. Geben eine Gleichung einer weiteren Stammfunktion \(G\) von \(f\) an, für die \(G(1) = 2e\) gilt.

    (3 BE)

  • In einem Koordinatensystem (vgl. Abbildung 1) werden alle Rechtecke betrachtet, die folgende Bedingungen erfüllen:

    • Zwei Seiten liegen auf den Koordinatenachsen.

    • Ein Eckpunkt liegt auf dem Graphen \(G_f\) der Funktion \(f \, \colon x \mapsto -\ln x\) mit \(0 < x < 1\).

    Abbildung 1 zeigt ein solches Rechteck.

    Abbildung 1 zu Teilaufgabe 4Abb. 1

    Unter den betrachteten Rechtecken gibt es eines mit größtem Flächeninhalt. Berechnen Sie die Seitenlängen dieses Rechtecks.

    (5 BE)

  • Ermitteln Sie die Gleichung der Tangente an \(G_h\) im Punkt \((-2|h(-2))\). Berechnen Sie den Wert, den das Modell für die Größe des Winkels liefert, den die Blattränder an der Blattspitze einschließen.

    (6 BE)

  • Bestimmen Sie den Term der Ableitungsfunktion \(f'\) von \(f\) und geben Sie die maximale Definitionsmenge von \(f'\) an.

    Bestimmen Sie  \(\lim \limits_{x \, \to \, 6} f'(x)\) und beschreiben Sie, welche Eigenschaft von \(G_f\) aus diesem Ergebnis folgt.

    (zur Kontrolle: \(\displaystyle f'(x) = \frac{1}{\sqrt{12 - 2x}}\))

    (5 BE)