Ableitung einer Potenzfunktion

  • Bestimmen Sie den Term der Ableitungsfunktion \(f'\) von \(f\) und geben Sie die maximale Definitionsmenge von \(f'\) an.

    Bestimmen Sie  \(\lim \limits_{x \, \to \, 6} f'(x)\) und beschreiben Sie, welche Eigenschaft von \(G_f\) aus diesem Ergebnis folgt.

    (zur Kontrolle: \(\displaystyle f'(x) = \frac{1}{\sqrt{12 - 2x}}\))

    (5 BE)

  • Gegeben ist die Funktion \(\displaystyle h \colon x \mapsto \frac{3}{e^{x + 1} - 1}\) mit Definitionsbereich \(D_{h} = ]-1;+\infty[\). Abbildung 2 zeigt den Graphen \(G_{h}\) von \(h\).

    abbildung 2 zu Teilaufgabe 2 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Begründen Sie anhand des Funktionsterms, das \(\lim \limits_{x \, \to \, +\infty} h(x) = 0\) gilt.

    Zeigen Sie rechnerisch für \(x \in D_{h}\), dass für die Ableitung \(h'\) von \(h\) gilt: \(h'(x) < 0\).

    (4 BE)

  • Bestimmen Sie Lage und Art des Extrempunkts von \(G_{f}\).

    (4 BE)

  • Es gibt Punkte des Querschnitts der Tunnelwand, deren Abstand zu \(M\) minimal ist. Bestimmen Sie die \(x\)-Koordinaten der Punkte \(P_{x}\), für die \(d(x)\) minimal ist, und geben Sie davon ausgehend diesen minimalen Abstand an.

    (5 BE)

  • Ermitteln Sie den Zeitpunkt nach Beginn der Messung, zu dem die momentane Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft \(-30\frac{\textsf{1}}{\textsf{h}}\) beträgt.

    (2 BE)

  • Überprüfen Sie rechnerisch, ob das Fenster bei seiner Drehung am Möbelstück anstoßen kann.

    (5 BE)

  • Zeigen Sie, dass dieser Abstand mit der minimalen Entfernung des Hubschraubers vom Mittelpunkt des Grundstücks übereinstimmt, der im Modell durch den Punkt \(M(-40|30|30)\) dargestellt wird.

    (5 BE)

  • Geben Sie den Term einer in \(\mathbb R\) definierten Funktion \(f\) an, sodass die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{-1}^x f(t)\,dt\) genau zwei Nullstellen besitzt. Geben Sie die Nullstellen von \(F\) an.

    (3 BE)

  • Im Modell gibt es einen Zeitpunkt \(x_M\), zu dem die Blumen am schnellsten wachsen. Bestimmen Sie mithilfe von Abbildung 2 einen Näherungswert für \(x_M\). Ermitteln Sie anschließend einen Näherungswert für die maximale Wachstumsrate in Zentimetern pro Tag.

    (5 BE)

  • Ein den oberen Rand des Kunstwerks genauer darstellendes Modell liefert der Graph der in \(\mathbb R\) definierten ganzrationalen Funktion \(q\) vierten Grades mit \(q(x) = -0{,}11x^4 - 0{,}81x^2 + 5\,\). Der Graph von \(q\) wird mit \(G_q\) bezeichnet.

    Weisen Sie rechnerisch nach, dass \(G_q\) symmetrisch bezüglich der \(y\)-Achse ist, durch die Punkte \(A\) und \(B\) verläuft und genau einen Extrempunkt besitzt.

    (7 BE)

  • Im Intervall \(]0;2[\) gibt es eine Stelle \(x_0\), an der der Wert der Differenz \(d(x) = q(x) - p(x)\) maximal wird. Berechnen Sie \(x_0\) sowie den Wert der zugehörigen Differenz.

    (5 BE)

  • Geben Sie das Verhalten von \(g\) für \(x \to -\infty\) und \(x \to +\infty\) an.

    (2 BE)

  • Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an.

    \[g(x)= \frac{3}{x^2 - 1}\]

    (3 BE)

  • Zeigen Sie, dass \(F : x \mapsto \frac{1}{4}x^2 \cdot (2\ln x - 1)\) mit Definitionsmenge \(\mathbb R^+\) eine Stammfunktion der in \(\mathbb R^+\) definierten Funktion \(f : x \mapsto x \cdot \ln x\) ist. Bestimmen Sie den Term derjenigen Stammfunktion von \(f\), die in \(x = 1\) eine Nullstelle hat.

    (5 BE)

  • Bestimmen Sie rechnerisch die Koordinaten desjenigen Graphenpunkts \(Q_E(x_E|y_E)\), der von \(P\) den kleinsten Abstand hat. Tragen Sie \(Q_E\) in Abbildung 1 ein.

    (zur Kontrolle: \(x_E = 1\))

    (7 BE)

  • Weisen Sie nach, dass die Verbindungsstrecke \([PQ_E]\) und die Tangente an \(G_f\) im Punkt \(Q_E\) senkrecht zueinander sind.

    (5 BE)

  • Bestimmen Sie den Term der Ableitung von \(f\).

    (2 BE)

  • Bestimmen Sie rechnerisch Lage und Art der Extrempunkte von \(G_f\).

    (zur Kontrolle: \(f'(x) = 2e^{-0{,}5x^2} \cdot (1 - x^2)\,\); y-Koordinate des Hochpunkts: \(\frac{2}{\sqrt{e}}\))

    (6 BE)

  • Bestimmen Sie einen Näherungswert \(x_1\) für die \(x\)-Koordinate dieses Schnittpunkts, indem Sie für die in \(\mathbb R\) definierte Funktion \(d \colon x \mapsto g(x) - h(x)\) den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_0 = 1\) durchführen.

    (4 BE)

  • Bestimmen Sie rechnerisch Lage und Art der Extrempunkte von \(G_f\,\).

    (8 BE)