Analysis 1

  • Geben ist die Funktion \(f \colon x \mapsto 2 - \ln{(x - 1)}\) mit maximalem Definitionsbereich \(D_{f}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet.

    Zeigen Sie, dass \(D_{f} = \; ]1;+\infty[\) ist, und geben Sie das Verhalten von \(f\) an den Grenzen des Definitionsbereichs an.

    (3 BE)

  • Berechnen Sie die Nullstelle von \(f\).

    (2 BE)

  • Beschreiben Sie, wie \(G_{f}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}\) definierten Funktion \(x \mapsto \ln{x}\) hervorgeht. Erklären Sie damit das Monotonieverhalten von \(G_{f}\).

    (5 BE)

  • Zeigen Sie, dass \(F \colon x \mapsto 3x - (x - 1) \cdot \ln{(x - 1)}\) mit Definitionsbereich \(D_{f} = \; ]1; +\infty[\) eine Stammfunktion von \(f\) ist, und bestimmen Sie den Term der Stammfunktion von \(f\), die bei \(x = 2\) eine Nullstelle hat.

    (4 BE)

  • Berechnen Sie den Wert des Integrals \(\displaystyle \int_1^2 f(x)dx\).

    (3 BE)

  • Betrachtet werden für \(k \in \mathbb R\) die in \(]-\infty;0]\) definierten Funktionen \(f_k \colon x \mapsto f(x) + k\). Somit gilt \(f_0(x) = f(x)\), wobei sich \(f_0\) und \(f\) im Definitionsbereich unterscheiden.

    Begründen Sie mithilfe der ersten Ableitung von \(\boldsymbol{f_k}\), dass \(f_k\) für jeden Wert von \(k\) umkehrbar ist. Skizzieren Sie in Abbildung 1 den Graphen der Umkehrfunktion von \(f_0\).

    (4 BE) 

  • Der Graph von \(f\) schließt mit der \(x\)-Achse sowie den Geraden mit den Gleichungen \(x = 1\) und \(x = b\) mit \(b > 1\) ein Flächenstück ein. Bestimmen Sie denjenigen Wert von \(b\), für den dieses Flächenstück den Inhalt 1 hat.

    (3 BE)

  • Berechnen Sie auf der Grundlage des Modells die Größe des Winkels \(\alpha\), den das Plateau und die Fahrbahn an der Kante zur Abfahrt einschließen (vgl. Abbildung 2).

    (2 BE)

  • Die vordere Seitenfläche des Hinderniselements wird in Teilbereichen der Auf- und Abfahrt als Werbefläche verwendet (vgl. Abbildung 1). Im Modell handelt es sich um zwei Flächenstücke, nämlich um die Fläche zwischen \(G_{f}\) und der \(x\)-Achse im Bereich \(2 \leq x \leq 6\) sowie die dazu symmetrische Fläche im II-Quadranten. Berechnen Sie unter Verwendung der in Aufgabe 1d angegebenen Stammfunktion \(F\), wie viele Quadratmeter als Werbefläche zur Verfügung stehen.

    (3 BE)

  • Betrachtet wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_{k} \colon x \mapsto kx^{3} + 3 \cdot (k + 1)x^{2} + 9x\) mit \(k \in \mathbb R \backslash \{0\}\) und den zugehörigen Graphen \(G_{k}\). Für jedes \(k\) besitzt der Graph \(G_{k}\) genau einen Wendepunkt \(W_{k}\).

    Geben Sie das Verhalten von \(g_{k}\) an den Grenzen des Definitionsbereichs in Abhängigkeit von \(k\) an.

    (2 BE)

  • Bestimmen Sie die \(x\)-Koordinate von \(W_{k}\) in Abhängigkeit von \(k\).

    (zur Kontrolle: \(x = -\frac{1}{k} - 1\))

    (3 BE)

  • Bestimmen Sie den Wert von \(k\) so, dass der zugehörige Wendepunkt \(W_{k}\) auf der \(y\)-Achse liegt. Zeigen Sie, dass in diesem Fall der Punkt \(W_{k}\) im Koordinatenursprung liegt und die Wendetangente, d. h. die Tangente an \(G_{k}\) im Punkt \(W_{k}\), die Steigung \(9\) hat.

    (4 BE)

  • Gegeben ist die in \(\mathbb R \backslash \{0\}\) definierte Funktion \(f \colon x \mapsto \dfrac{1}{x^2}+1\).

    Geben Sie eine Gleichung der senkrechten und eine Gleichung der waagrechten Asymptote des Graphen von \(f\) an.

    (2 BE)

  • Der Graph \(G_f\) besitzt in genau einem Punkt eine waagrechte Tangente. Bestimmen Sie die Koordinaten dieses Punkts und begründen Sie, dass es sich um einen Hochpunkt handelt.

    (zur Kontrolle: \(f'(x) = \dfrac{10 - 2x}{\sqrt{10x - x^2}}\); \(y\)-Koordinate des Hochpunkts: \(10\))

    (5 BE)

  • Betrachtet wird die in \(\mathbb R^{+}\) definierte Funktion \(f\) mit \(f(x) = \dfrac{1}{\sqrt{x^{3}}}\).

    Zeigen Sie, dass die in \(\mathbb R^{+}\) definierte Funktion \(F\) mit \(F(x) = -\dfrac{2}{\sqrt{x}}\) eine Stammfunktion von \(f\) ist.

    (2 BE)

  • Die Abbildung 1 zeigt den Graphen \(G_{f'}\) der Ableitungsfunktion \(f'\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(f\). Nur in den Punkten \((-4|f'(-4))\) und \((5|f'(5))\) hat der Graph \(G_{f'}\) waagrechte Tangenten.

    Abbildung 1 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2020

    Begründen Sie, dass \(f\) genau eine Wendestelle besitzt. 

    (2 BE)

  • Es gibt Tangenten an den Graphen von \(f\), die parallel zur Winkelhalbierenden des I. und III. Quadranten sind. Ermitteln Sie anhand des Graphen \(\mathbf{G_{f'}}\) der Ableitungsfunktion \(f'\) in der Abbildung 1 Näherungswerte für die \(x\)-Koordinaten derjenigen Punkte, in denen der Graph von \(f\) jeweils eine solche Tangente hat.

    (2 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto x^{2} + 4\) und \(g_{m} \colon x \mapsto m \cdot x\) mit \(m \in \mathbb R\). Der Graph von \(f\) wird mit \(G_{f}\) und der Graph von \(g_{m}\) mit \(G_{m}\) bezeichnet.

    Skizzieren Sie \(G_{f}\) in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen \(G_{f}\) und \(G_{4}\).

    (3 BE)

  • Es gibt Werte von \(m\), für die die Graphen \(G_{f}\) und \(G_{m}\) jeweils keinen gemeinsamen Punkt haben. Geben Sie diese Werte von \(m\) an.

    (2 BE)

  • Gegeben ist die Funktion \(g\) mit \(g(x) = 0{,}7 \cdot e^{0{,}5x} - 0{,}7\) und \(x \in \mathbb R\). Die Funktion \(g\) ist umkehrbar. Die Abbildung 2 zeigt den Graphen \(G_{g}\) von \(g\) sowie einen Teil des Graphen \(G_{h}\) der Umkehrfunktion \(h\) von \(g\).

    Abbildung 2 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2020

    Zeichnen Sie in die Abbildung 2 den darin fehlenden Teil von \(G_{h}\) ein.

    (2 BE)