Aufgabengruppe 1 (Pflichtteil)

  • Gegeben ist eine in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = x^4 - kx^2\), wobei \(k\) eine positive reelle Zahl ist. Die Abbildung zeigt den Graphen von \(f\).

    1. Zeigen Sie, dass \(f'(x) = 2x \cdot \left( 2x^2-k \right)\) ein Term der ersten Ableitungsfunktion von \(f\) ist.
      (1 BE)
    2. Die beiden Tiefpunkte des Graphen von \(f\) haben jeweils die \(y\)-Koordinate \(-1\). Ermitteln Sie den Wert von \(k\).
      (4 BE)

    Abbildung Aufgabe A2 Aufgabengruppe 1 (Pflichtteil) Prüfungsteil A Mathematik Beispiel-Abiturprüfung Bayern 2026

  • Gegeben ist die in \(\mathbb R^+\) definierte Funktion \(f \colon x \mapsto \left( \ln{x} \right)^2\). Der Graph von \(f\) verläuft durch den Punkt \(P(e|1)\).

    1. Die zweite Ableitungsfunktion von \(f\) besitzt an der Stelle \(x = e\) eine Nullstelle mit Vorzeichenwechsel. Geben Sie die Bedeutung dieser Tatsache für den Graphen von \(f\) an.
      (1 BE)
    2. Bestimmen Sie eine Gleichung der Tangente an den Graphen von \(f\) im Punkt \(P\).
      (4 BE)