Bestimmtes Integral

  • Gegeben ist die in \(\mathbb R\) definierte Funktion  \(f \colon x \mapsto -x^2 + 2ax\) mit \(a \in \; ]1;+\infty[\). Die Nullstellen von \(f\) sind \(0\) und \(2a\).

    Zeigen Sie, dass das Flächenstück, das der Graph von \(f\) mit der \(x\)-Achse einschließt, den Inhalt \(\frac{4}{3}a^3\) hat.

    (2 BE) 

  • Ermitteln Sie anhand der Abbildung einen Näherungswert für das Integral \(\displaystyle \int_{-1}^{4}f(x)dx\).

    (4 BE)

  • Die von der Anlage produzierte elektrische Energie wird vollständig in das Stromnetz eingespeist. Der Hauseigentümer erhält für die eingespeiste elektrische Energie eine Vergütung von 10 Cent pro Kilowattstunde (kWh).

    Die in \([4;20]\) definierte Funktion \(x \mapsto E(x)\) gibt die elektrische Energie in kWh an, die die Anlage am betrachteten Tag von 4:00 Uhr bis x Stunden nach Mitternacht in das Stromnetz einspeist.

    Es gilt \(E'(x) = p(x)\) für \(x \in [4;20]\).

    Bestimmen Sie mithilfe der Abbildung einen Näherungswert für die Vergütung, die der Hauseigentümer für die von 10:00 Uhr bis 14:00 Uhr in das Stromnetz eingespeiste elektrische Energie erhält.

    (3 BE)

  • Berechnen Sie den Inhalt der Fläche, die von \(G_{f}\) und der Strecke \([AB]\) eingeschlossen wird.

    (5 BE)

  • Berechnen Sie den Wert des Integrals \(\displaystyle \int_{2}^{3} f(x)dx\).

    (3 BE)

  • Der Graph von \(f\) schließt mit der \(x\)-Achse sowie den Geraden mit den Gleichungen \(x = 1\) und \(x = b\) mit \(b > 1\) ein Flächenstück ein. Bestimmen Sie denjenigen Wert von \(b\), für den dieses Flächenstück den Inhalt 1 hat.

    (3 BE)

  • Berechnen Sie den Wert des Integrals \(\displaystyle \int_1^2 f(x)dx\).

    (3 BE)

  • Die in \(\mathbb R\) definierte Funktion \(Q\,\colon x \mapsto \frac{16}{17}e^{-\frac{1}{4}x} \cdot \left( \sin x - \frac{1}{4}\cos x \right)\) ist eine Stammfunktion von \(q\).

    Zeigen Sie rechnerisch, dass \(\displaystyle \int_0^{2\pi} q(x)\,dx > 0\) gilt, und deuten Sie die Aussage dieser Ungleichung am Graphen von \(q\).

    (3 BE)

  • Die Funktion \(g\) ist nicht konstant und es gilt \(\displaystyle \int_{0}^{2} g(x) dx = 0\).

    (2 BE)

  • Berechnen Sie durch Integration mithilfe des Näherungswerts von \(a\) einen Näherungswert für den Inhalt des Flächenstücks, das \(G_f\) im ersten Quadranten mit der \(x\)-Achse einschließt.

    (5 BE)

  • Geben Sie den Zusammenhang zwischen der Funktion \(F\) und dem Ergebnis der Aufgabe 1e an.

    (1 BE)

  • Durch die in Aufgabe 2 entstandene herzförmige Figur soll das abgebildete Blatt modellhaft beschrieben werden. Eine Längeneinheit in Koordinatensystem aus Aufgabe 1d soll dabei 1 cm in Wirklichkeit entsprechen.

    Berechnen Sie den Inhalt des von \(G_h\) und der Winkelhalbierenden \(w\) eingeschlossenen Flächenstücks. Bestimmen Sie unter Verwendung dieses Werts den Flächeninhalt des Blatts auf der Grundlage des Modells.

    Abbildung zu Teilaufgabe 3

     

    (5 BE)

  • Der Graph von \(f\), die \(x\)-Achse sowie die Geraden mit den Gleichungen \(x = 10\) und \(x = s\) mit \(s > 10\) schließen ein Flächenstück mit dem Inhalt \(A(s)\) ein. Bestimmen Sie \(A(s)\).

    (Ergebnis: \(\displaystyle A(s) = 10 \cdot \ln{\frac{s^2 - 25}{75}}\))

    (5 BE)

  • Die erste Ableitung von \(h\) ist \(h'\).

    Bestimmen Sie den Wert von \(\displaystyle \int _{0}^{1}h'(x)\,dx\). 

    (2 BE)

  • \(G_{f}\) und die \(x\)-Achse schließen im IV. Quadranten ein Flächenstück ein, das durch die Gerade \(g\) in zwei Teilflächen zerlegt wird. Berechnen Sie das Verhältnis der Flächeninhalte dieser beiden Teilflächen. 

    (6 BE)

  • Berechnen Sie \(\displaystyle \int_{2}^{4} g(t)\,dt\) und deuten Sie den Wert des Integrals im Sachzusammenhang.

    (Teilergebnis: Wert des Integrals: 0,5)

    (4 BE)

  • Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

    (2 BE)

  • Die Abbildung zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(f\).

    Abbildung zu Teilaufgabe 5 - Analysis 1 - Prüfungsteil A . Mathematik Abitur Bayern 2016

    Bestimmen Sie mithilfe der Abbildung einen Näherungswert für \(\displaystyle \int_{3}^{5} f(x) \,dx\).

    (2 BE)

  • Zeigen Sie, dass der Graph der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto x^{2} \cdot \sin{x}\) punktsymmetrisch bezüglich des Koordinatenursprungs ist, und geben Sie den Wert des Integrals \(\displaystyle \int_{-\pi}^{\pi} x^{2} \cdot \sin{x}\, dx\) an.

    (3 BE)

  • Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

    (2 BE)

Seite 3 von 4