Bestimmtes Integral

  • Zeigen Sie, dass der Graph der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto x^{2} \cdot \sin{x}\) punktsymmetrisch bezüglich des Koordinatenursprungs ist, und geben Sie den Wert des Integrals \(\displaystyle \int_{-\pi}^{\pi} x^{2} \cdot \sin{x}\, dx\) an.

    (3 BE)

  • Die Abbildung zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(f\).

    Abbildung zu Teilaufgabe 5 - Analysis 1 - Prüfungsteil A . Mathematik Abitur Bayern 2016

    Bestimmen Sie mithilfe der Abbildung einen Näherungswert für \(\displaystyle \int_{3}^{5} f(x) \,dx\).

    (2 BE)

  • Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

    (2 BE)

  • Eine zweite Modellierung des Querschnitts der Tunnelwand verwendet eine Kosinusfunktion vom Typ \(k \colon x \mapsto 5 \cdot \cos(c \cdot x)\) mit \(c \in \mathbb R\) und Definitionsbereich \(D_{k} = [-5;5]\), bei der offensichtlich Bedingung II erfüllt ist.

    Bestimmen Sie \(c\) so, dass auch Bedingung I erfüllt ist, und berechnen Sie damit den Inhalt der Querschnittfläche des Tunnels.

    (zur Kontrolle: \(c = \frac{\pi}{10}\), Inhalt der Querschnittfläche: \(\frac{100}{\pi}\) m²)

    (5 BE)

  • Die Funktion \(g\) ist nicht konstant und es gilt \(\displaystyle \int_{0}^{2} g(x) dx = 0\).

    (2 BE)

  • Schraffieren Sie in Abbildung 1 ein Flächenstück, dessen Inhalt \(A_{0}\) dem Wert des Integrals \(\displaystyle \int_{e}^{x_{S}} (x - h^{*}(x)) dx\) entspricht, wobei \(x_{S}\) die \(x\)-Koordinate von Punkt \(S\) ist. Der Graph von \(h^{*}\), der Graph der Umkehrfunktion von \(h^{*}\) sowie die beiden Koordinatenachsen schließen im ersten Quadranten ein Flächenstück mit Inhalt \(A\) ein. Geben Sie unter Verwendung von \(A_{0}\) einen Term zur Berechnung von \(A\) an.

    (4 BE)

  • Erläutern Sie die Bedeutung des Werts des Integrals \(\displaystyle \int_{a}^{b} g(t) dt\) für \(0 \leq a < b \leq 12\) im Sachzusammenhang. Berechnen Sie das Volumen des Wassers, das sich 7,5 Stunden nach Beobachtungsbeginn im Becken befindet, wenn zu Beobachtungsbeginn 150 m³ Wasser im Becken waren. Begründen Sie, dass es sich hierbei um das maximale Wasservolumen im Beobachtungszeitraum handelt.

    (6 BE)

  • Die Gerade mit der Gleichung \(y = 1{,}1\) teilt im Modell den vom Kunstwerk eingenommenen Teil der Wand in zwei unterschiedlich gestaltete Bereiche. Beschreiben Sie, wie man mithilfe der Funktion \(q\) das Verhältnis der Flächeninhalte dieser beiden Bereiche näherungsweise bestimmen kann. Geben Sie dazu geeignete Ansätze an und kommentieren Sie diese.

    (4 BE)

  • Berechnen Sie den Inhalt der Fläche, die \(G_f\) mit den Koordinatenachsen und der Geraden \(x = 4\) einschließt.

    (4 BE)

  • Bestimmen Sie \(\displaystyle \int_1^4 f(t)\,dt\) näherungsweise mithilfe von Abbildung 3. Deuten Sie den Wert des Integrals im Sachzusammenhang.

    (5 BE)

  • Berechnen Sie mithilfe der Funktion \(q\) einen Näherungswert für den Flächeninhalt \(A\) des vom Kunstwerk eingenommenen Teils der Wand.

    (4 BE)

  • Berechnen Sie den Wert des bestimmten Integrals \(\displaystyle \int_0^2 f(x)\,dx\,\).

    Warum stimmt der Wert dieses Integrals nicht mit dem Inhalt der Fläche überein, die für \(0 \leq x \leq 2\) zwischen dem Graphen von \(f\) und der \(x\)-Achse liegt?

    (5 BE)

  • Betrachtet wird die Aussage \(\displaystyle \int_{0}^{\pi} \sin(2x)\,dx = 0\).

    Machen Sie ohne Rechnung anhand einer sorgfältigen Skizze plausibel, dass die Aussage wahr ist.

    (3 BE)

  • Der Graph von \(f\), die \(x\)-Achse und die Gerade \(x = u\) mit \(u \in \mathbb R^+\) schließen für \(0 \leq x \leq u\) ein Flächenstück mit dem Inhalt \(A(u)\) ein.

    Zeigen Sie, dass \(A(u) = 2 - 2e^{-0{,}5u^2}\) gilt. Geben Sie \(\lim \limits_{u \, \to \, + \infty} A(u)\) an und deuten Sie das Ergebnis geometrisch.

    (6 BE)

  • Die Ursprungsgerade \(h\) mit der Gleichung \(y = \frac{2}{e^2} \cdot x\) schließt mit \(G_f\) für \(x \geq 0\) ein Flächenstück mit dem Inhalt \(B\) vollständig ein.

    Berechnen Sie die \(x\)-Koordinaten der drei Schnittpunkte der Geraden \(h\) mit \(G_f\) und zeichnen Sie die Gerade in Abbildung 2 ein. Berechnen Sie \(B\).

    (6 BE)

  • Begründen Sie für \(c > 0\) anhand einer geeigneten Skizze, dass \(\displaystyle \int_0^3 g_c(x)\,dx = \int_0^3 f(x)\,dx + 3c\) gilt.

    (2 BE)

  • Abbildung 1Abb. 1

    Abbildung 1 zeigt den Graphen \(G_f\) der Funktion \(f\) mit Definitionsbereich \([-2;2]\). Der Graph besteht aus zwei Halbkreisen, die die Mittelpunkte \((-1|0)\) bzw. \((1|0)\) sowie jeweils den Radius 1 besitzen. Betrachtet wird die in \([-2;2]\) definierte Integralfunktion \(\displaystyle F \colon \mapsto \int_0^x f(t)\,dt\).

    Geben Sie \(F(0)\), \(F(2)\) und \(F(-2)\) an.

    (3 BE)

  • Skizzieren Sie den Graphen von \(F\) in Abbildung 1.

    (2 BE)

  • Zeigen Sie, dass \(\displaystyle \int_0^4 f(x)\,dx = 2 + 8 \cdot \ln 5\) gilt.

    Bestimmen Sie nun ohne weitere Integration den Wert des Integrals \(\displaystyle \int_{-6}^{-2} f(x)\,dx\); veranschaulichen Sie Ihr Vorgehen durch geeignete Eintragungen in Abbildung 2.

    (8 BE)

Seite 4 von 4