Binomialverteilte Zufallsgröße

  • Zwei Seitenflächen eines Laplace-Würfels sind rot, drei sind gelb und eine Seitenfläche ist blau.

    Wie viele Würfe sind mindestens nötig, um mit einer Wahrscheinlichkeit von mindestens 60 % mindestens dreimal die Farbe Rot zu erhalten.

  • Aufgabe 1

    Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

    Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

    a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

    b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

    c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

    d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

    e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

    Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

     

    Aufgabe 2

    Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

    Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

     

    Aufgabe 3

    Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

    Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

    Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

     

    Aufgabe 4

    Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

    a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

    (mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

    b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

    c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

    d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

     

    Aufgabe 5

    Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

    Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

  • Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

    Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

  • Bestimmen Sie unter Zuhilfenahme des Tafelwerks, wie viele Flaschen man mindestens öffnen muss, um mit einer Wahrscheinlichkeit von mehr als 5 % mindestens zwei Gewinnmarken zu finden.

    (4 BE)

  • Nach einer aktuellen Erhebung leiden 25 % der Einwohner Deutschlands an einer Allergie. Aus den Einwohnern Deutschlands werden \(n\) Personen zufällig ausgewählt.

    Bestimmen Sie, wie groß \(n\) mindestens sein muss, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens eine der ausgewählten Personen an einer Allergie leidet.

    (4 BE)

  • Im Folgenden ist \(n = 200\). Die Zufallsgröße \(X\) beschreibt die Anzahl der Personen unter den ausgewählten Personen, die an einer Allergie leiden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der binomialverteilten Zufallsgröße \(X\) höchstens um eine Standardabweichung von ihrem Erwartungswert abweicht.

    (5 BE)

  • Das Glücksrad wird zehnmal gedreht. Geben Sie einen Term an, mit dem die Wahrscheinlichkeit dafür berechnet werden kann, dass der blaue Sektor genau zweimal getroffen wird.

    (1 BE)

  • In der Abbildung ist die Wahrscheinlichkeitsverteilung einer Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4\}\) und dem Erwartungswert \(2\) dargestellt. Weisen Sie nach, dass es sich dabei nicht um eine Binomialverteilung handeln kann.

    Abbildung Teilaufgabe 2 Stochastik 1 Mathematik Abitur Bayern 2017 A

     

    (3 BE)

  • Das elektronische Stabilitätsprogramm (ESP) eines Autos kann Schleuderbewegungen und damit Unfälle verhindern.

    Gehen Sie bei den folgenden Aufgaben davon aus, dass 40 % aller Autos mit ESP ausgerüstet sind.

    200 Autos werden nacheinander zufällig ausgewählt; die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Autos mit ESP.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass von den ausgewählten Autos mindestens 70 mit ESP ausgerüstet sind.

    (3 BE)

  • Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse.

    \(A\): „Das fünfte ausgewählte Auto ist das erste mit ESP."

    \(B\): „Die Zufallsgröße \(X\) nimmt einen Wert an, der von ihrem Erwartungswert höchstens um eine Standardabweichung abweicht."

    (7 BE)

  • Der Anbaubetrieb sät 200 Samenkörner der Qualität B. Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(E\): „Von den gesäten Samenkörnern keimen genau 140."

    \(F\): „Von den gesäten Samenkörnern keimen mehr als 130 und weniger als 150."

    (3 BE)

  • Beschreiben Sie im Sachzusammenhang die Bedeutung des Terms \(1 - P(X \geq 275)\), wobei \(X\) eine binomial verteilte Zufallsgröße mit den Parametern \(n = 300\) und \(p = 0{,}95\) bezeichnet.

    (2 BE)

  • Der Großhändler behauptet, dass sich die Wahrscheinlichkeit für das Keimen eines Samenkorns der Qualität B durch eine veränderte Aufbereitung des Saatguts auf mehr als 70 % erhöht hat. Deshalb soll die Nullhypothese „Die Wahrscheinlichkeit für das Keimen eines Samenkorns der Qualität B ist höchstens 70 %." auf einem Signifikanzniveau von 5 % getestet werden. Dazu werden 100 der verändert aufbereiteten Samenkörner der Qualität B zufällig ausgewählt und gesät. Bestimmen Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Ein Unternehmen stellt Kunststoffteile her. Erfahrungsgemäß sind 4 % der hergestellten Teile fehlerhaft. Die Anzahl fehlerhafter Teile unter zufällig ausgewählten kann als binomialverteilt angenommen werden.

    50 Kunststoffteile werden zufällig ausgewählt. Bestimmen Sie für die folgenden Ereignisse jeweils die Wahrscheinlichkeit:

    \(A\):  „Genau zwei der Teile sind fehlerhaft."

    \(B\):  „Mindestens 6 % der Teile sind fehlerhaft."

    (3 BE)

  • Die Kunststoffteile werden aus Kunststoffgranulat hergestellt. Nach einem Wechsel des Granulats vermutet der Produktionsleiter, dass sich der Anteil der fehlerhaften Teile reduziert hat. Um einen Anhaltspunkt dafür zu gewinnen, ob die Vermutung gerechtfertigt ist, soll die Nullhypothese „Der Anteil der fehlerhaften Teile beträgt mindestens 4 %." auf der Grundlage einer Stichprobe von 200 Teilen auf einem Signifikanzniveau von 5 % getestet werden.

    Bestimmen sie die zugehörige Entscheidungsregel.

    (4 BE)

  • Gegeben ist eine binomialverteilte Zufallsgröße \(X\) mit dem Parameterwert \(n = 5\). Dem Diagramm in Abbildung 1 kann man die Wahrscheinlichkeitswerte \(P(X \leq k)\) mit \(k \in \{0; 1; 2; 3; 4\}\) entnehmen.

    Ergänzen Sie den zu \(k = 5\) gehörenden Wahrscheinlichkeitswert im Diagramm. Ermitteln Sie näherungsweise die Wahrscheinlichkeit \(P(X = 2)\).

    Abb. 1Abbildung 1 Aufgabe 2 Stochastik 2 Mathematik Abitur Bayern 2019 A

    (2 BE)

  • Möchte man an einer Fahrt teilnehmen, so muss man dafür im Voraus eine Reservierung vornehmen, ohne dabei schon den Fahrpreis bezahlen zu müssen. Erfahrungsgemäß erscheinen von den Personen mit Reservierung einige nicht zur Fahrt. Für die 60 zur Verfügung stehenden Plätze lässt das Unternehmen deshalb bis zu 64 Reservierungen zu. Es soll davon ausgegangen werden, dass für jede Fahrt tatsächlich 64 Reservierungen vorgenommen werden. Erscheinen mehr als 60 Personen mit Reservierung zur Fahrt, so können nur 60 von ihnen daran teilnehmen; die übrigen müssen abgewiesen werden.
    Die Zufallsgröße \(X\) beschreibt die Anzahl der Personen mit Reservierung, die nicht zur Fahrt erscheinen. Vereinfachend soll angenommen werden, dass \(X\) binomialverteilt ist, wobei die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, 10 % beträgt. Die auf der nächsten Seite abgebildete Tabelle ergänzt das zugelassene Tafelwerk (vgl. Seitenende).

    Geben Sie einen Grund an, dass es sich bei der Annahme, die Zufallsgröße \(X\) ist binomialverteilt, im Sachzusammenhang um eine Vereinfachung handelt.

    (1 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass keine Person mit Reservierung abgewiesen werden muss.

    (3 BE)

Seite 1 von 3