NEU Abiturskript G9 PDF
G9 Klausur 11/1-G901 Neu
G9 Klausur 11/1-G902 Neu
G9 Klausur 11/2-G901 Neu
Die Doppelpyramide wird so um die \(x\)-Achse gedreht, dass die Seitenfläche \(BCT\) in eine Fläche übergeht, die in der \(xy\)-Ebene liegt, und der Punkt \(S\) in einen Punkt \(S'\), der eine positive \(y\)-Koordinate hat. Abbildung 2 zeigt jeweils einen Längsschnitt der Doppelpyramide durch die \(yz\)-Ebene vor und nach dieser Drehung.
Begründen Sie anhand geeigneter Eintragungen in Abbildung 2, dass die \(y\)-Koordinate von \(S'\) den Wert \(24 \cdot \sin{\varphi}\) hat, wobei \(\varphi\) die in Aufgabe c bestimmte Winkelgröße ist.
Abb. 2
(2 BE)
Im Folgenden wird die Doppelpyramide in Abbildung 1 betrachtet. Die beiden Teilpyramiden \(ABCDS\) und \(ABCDT\) sind gleich hoch. Der Punkt \(T\) liegt im Koordinatenursprung, der Punkt \(S\) ebenfalls auf der \(z\)-Achse. Die Seitenfläche \(BCT\) liegt in einer Ebene \(E\).
Bestimmen Sie eine Gleichung von \(E\) in Koordinatenform.
(zur Kontrolle: \(E \colon 12y-5z= 0\))
Abb. 1
(3 BE)
Christian Rieger - mathelike