Extrempunkt(e)/Extremwert(e)

  • Eine in \(\mathbb R\) definierte ganzrationale, nicht lineare Funktion \(f\) mit erster Ableitungsfunktion \(f'\) und zweiter Ableitungsfunktion \(f''\) hat folgende Eigenschaften:

    • \(f\) hat bei \(x_1\) eine Nullstelle.
    • Es gilt \(f'(x_2) = 0\) und \(f''(x_2) \neq 0\).
    • \(f'\) hat ein lokales Minimum an der Stelle \(x_3\).

    Abbildung 1 zeigt die Positionen von \(x_1\), \(x_2\) und \(x_3\).

    Abbildung 1 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2023Abb. 1

    Begründen Sie, dass der Grad von \(f\) mindestens 3 ist.

    (2 BE)

  • Bestimmen Sie die Koordinaten des im II. Quadranten liegenden Hochpunkts des Graphen von \(h\).

    (3 BE)

  • Zeigen Sie, dass \(G_f\) genau einen Hochpunkt besitzt, und geben Sie dessen Koordinaten an.

    (zur Kontrolle: \(x\)-Koordinate des Hochpunkts: \(\ln 3\))

    (5 BE)

  • Berechnen Sie \(f(0)\) sowie \(f(3)\) und skizzieren Sie \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse in einem Koordinatensystem.

    (3 BE)

  • Betrachtet wird nun die in \(\mathbb R\) definierte Funktion \(\displaystyle F\,\colon\,x\mapsto \int_{a}^{x}f(t)\,dt\).

    Geben Sie an, welche besonderen Eigenschaften der Graph von \(F\) im Punkt \((a|F(a))\) hat; begründen Sie jeweils Ihre Antwort.

    (4 BE)

  • Für die erste Ableitung von \(f_{a,b,c}\) gilt: \(f'_{a,b,c}(x) = -\dfrac{ax^{2} + 2bx - ac}{(x^{2} +c)^{2}}\).

    Zeigen Sie: Wenn \(a \neq 0\) und \(c > 0\) gilt, dann besitzt der Graph von \(f_{a,b,c}\) genau zwei Extrempunkte.

    (4 BE)

  • Gegeben ist die Funktion \(\displaystyle f \, \colon x \mapsto \frac{x}{\ln x}\) mit Definitionsmenge \(\mathbb R^+ \, \backslash \{1\}\). Bestimmen Sie Lage und Art des Extrempunkts des Graphen von \(f\).

    (5 BE)

  • Zeichnen Sie die Parabel \(G_h\) - unter Berücksichtigung des Scheitels - im Bereich \(-2 \leq x \leq 4\) in Ihre Zeichnung aus Aufgabe 1d ein. Spiegelt man diesen Teil von \(G_h\) an der Winkelhalbierenden \(w\), so entsteht eine herzförmige Figur; ergänzen Sie Ihre Zeichnung dementsprechend.

    (4 BE)

  • Ermitteln Sie unter Verwendung von Ergebnissen aus Aufgabe 1 den Zeitpunkt auf Sekunden genau, zu dem der Anteil von Tl 207-Kernen im Gefäß am größten ist.

    (2 BE)

  • Berechnen Sie \(f(-5)\) und \(f(-1{,}5)\) und skizzieren Sie \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1.

    (4 BE)

  • Bestimmen Sie Lage und Art des Extrempunkts von \(G_{f}\).

    (4 BE)

  • Zu Beginn eines Ausatemvorgangs befinden sich 3,5 Liter Luft in der Lunge der Testperson. Skizzieren Sie auf der Grundlage des Modells unter Berücksichtigung des Ergebnisses aus Aufgabe 3c in einem Koordinatensystem für \(0 \leq t \leq 8\) den Graphen einer Funktion, die den zeitlichen Verlauf des Luftvolumens in der Lunge der Testperson beschreibt.

    (3 BE)

  • Begründen Sie, dass \(2{,}5\) die \(x\)-Koordinate des Wendepunkts von \(G_{f}\) ist.

    (2 BE)

  • Gegeben ist eine in \(\mathbb R\) definierte ganzrationale Funktion \(f\) dritten Grades, deren Graph \(G_{f}\) an der Stelle \(x = 1\) einen Hochpunkt und an der Stelle \(x = 4\) einen Tiefpunkt besitzt.

    Begründen Sie, dass der Graph der Ableitungsfunktion \(f'\) von \(f\) eine Parabel ist, welche die \(x\)-Achse in den Punkten \((1|0)\) und \((4|0)\) schneidet und nach oben geöffnet ist.

    (3 BE)

  • Bestimmen Sie Lage und Art des Extrempunkts von \(G_{f}\).

    (3 BE)

  • Im Rahmen eines W-Seminars modellieren Schülerinnen und Schüler einen Tunnelquerschnitt, der senkrecht zum Tunnelverlauf liegt. Dazu beschreiben sie den Querschnitt der Tunnelwand durch den Graphen einer Funktion in einem Koordinatensystem. Der Querschnitt des Tunnelbodens liegt dabei auf der \(x\)-Achse, sein Mittelpunkt \(M\) im Ursprung des Koordinatensystems; eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität. Für den Tunnelquerschnitt sollen folgende Bedingungen gelten:

    I   Breite des Tunnelbodens: b = 10 m

    II  Höhe des Tunnels an der höchsten Stelle: h = 5 m

    III Der Tunnel ist auf einer Breite von mindestens 6 m mindestens 4 m hoch.

    Abbildung zu Teilaufgabe 1 - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    Eine erste Modellierung des Querschnitts der Tunnelwand verwendet die Funktion \(p \colon x \mapsto -0{,}2x^{2} + 5\) mit dem Definitionsbereich \(D_{p} = [-5;5]\).

    Zeigen Sie, dass die Bedingungen I und II in diesem Modell erfüllt sind. Berechnen Sie die Größe des spitzen Winkels, unter dem bei dieser Modellierung die linke Tunnelwand auf den Tunnelboden trifft.

    (6 BE)

  • Betrachtet wird nun die Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x} f(t)\,dt\) mit Definitionsbereich \(D_{F} = [-5;5]\).

    Zeigen Sie mithilfe einer geometrischen Überlegung, dass \(F(5) = \frac{25}{4}\pi\) gilt.

    Einer der Graphen A, B und C ist der Graph von \(F\). Entscheiden Sie, welcher dies ist, und begründen Sie Ihre Entscheidung, indem Sie erklären, warum die beiden anderen Graphen nicht infrage kommen.

    Abbildung links zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Abbildung Mitte zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Abbildung rechts zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    (5 BE)

  • Untersuchen Sie das Monotonieverhalten von \(G_{h}\). Geben Sie den Grenzwert von \(h\) für \(x \to +\infty\) an und begründen Sie, dass \([-3;+\infty[\) die Wertemenge von \(h\) ist.

    (4 BE)

  • Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

    (Teilergebniss: \(x\)-Koordinate des Extrempunkts: \(\ln 4\))

    (4 BE)

  • Der Graph von \(F\) verläuft durch den Punkt \((\ln 2|0{,}5)\). Begründen Sie ohne weitere Rechnung, dass \(F\) keine größeren Werte als \(0{,}5\) annehmen kann und bei \(x = \ln 4\) eine Wendestelle besitzt. Berechnen Sie die \(y\)-Koordinate des zugehörigen Wendepunkts.

    (5 BE)

Seite 3 von 4