Extremstelle(n)

  • Berechnen Sie den Term \(q'(x)\) der ersten Ableitung von \(q\) und weisen Sie für die Funktion \(q\) nach, dass für die Extremstellen \(\tan x = -0{,}25\) gilt. Zeigen Sie damit, dass die Extremstellen von \(q\) nicht mit den Extremstellen der Kosinusfunktion übereinstimmen.

    (6 BE)

  • Zeigen Sie, dass \(G_f\) genau einen Hochpunkt besitzt, und geben Sie dessen Koordinaten an.

    (zur Kontrolle: \(x\)-Koordinate des Hochpunkts: \(\ln 3\))

    (5 BE)

  • Das Maximum der Intensität der Strahlung unserer Sonne liegt bei \(x_{\text{max}} = 17 \cdot 10^3\). Bestimmen Sie damit einen Näherungswert für die Oberflächentemperatur der Sonne.

    (2 BE)

  • Jeder der in der Abbildung dargestellten Graphen I, II und III gehört zu genau einer der Temperaturen 4000 K, 6000 K und 8000 K. Ordnen Sie die Temperaturen den Graphen zu und begründen Sie Ihre Zuordnung.

    (3 BE)

  • Eine Radarstation, deren Position im Modell durch den Punkt \(R\,(20|30|0)\) veranschaulicht wird, erfasst alle Objekte im Luftraum bis zu einer Entfernung von 50 km. Berechnen Sie die Länge der Flugstrecke von \(F_2\) in dem vom Radar erfassten Bereich.

    (6 BE)

  • Gegeben ist die Funktion \(\displaystyle f \, \colon x \mapsto \frac{x}{\ln x}\) mit Definitionsmenge \(\mathbb R^+ \, \backslash \{1\}\). Bestimmen Sie Lage und Art des Extrempunkts des Graphen von \(f\).

    (5 BE)

  • Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

    (3 BE)

  • Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

    (3 BE)

  • Zeichnen Sie die Parabel \(G_h\) - unter Berücksichtigung des Scheitels - im Bereich \(-2 \leq x \leq 4\) in Ihre Zeichnung aus Aufgabe 1d ein. Spiegelt man diesen Teil von \(G_h\) an der Winkelhalbierenden \(w\), so entsteht eine herzförmige Figur; ergänzen Sie Ihre Zeichnung dementsprechend.

    (4 BE)

  • Abbildung 2 zeigt den Graphen einer in \(\mathbb R\) definierten differenziebaren Funktion \(g \colon x \mapsto g(x)\). Mithilfe des Newton-Verfahrens soll ein Näherungswert für die Nullstelle \(a\) von \(g\) ermittelt werden. Begründen Sie, dass weder die \(x\)-Koordinate des Hochpunkts \(H\) noch die \(x\)-Koordinate des Tiefpunkts \(T\) als Startwert des Newton-Verfahrens gewählt werden kann.

    Abbildung 2 zu Teilaufgabe 4 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2015Abb. 2

     

    (2 BE)

  • Zu Beginn eines Ausatemvorgangs befinden sich 3,5 Liter Luft in der Lunge der Testperson. Skizzieren Sie auf der Grundlage des Modells unter Berücksichtigung des Ergebnisses aus Aufgabe 3c in einem Koordinatensystem für \(0 \leq t \leq 8\) den Graphen einer Funktion, die den zeitlichen Verlauf des Luftvolumens in der Lunge der Testperson beschreibt.

    (3 BE)

  • Ermitteln Sie die \(x\)-Koordinate des Punkts, in dem der Graph von \(f\) eine waagrechte Tangente hat.

    (4 BE)

  • Im Rahmen eines W-Seminars modellieren Schülerinnen und Schüler einen Tunnelquerschnitt, der senkrecht zum Tunnelverlauf liegt. Dazu beschreiben sie den Querschnitt der Tunnelwand durch den Graphen einer Funktion in einem Koordinatensystem. Der Querschnitt des Tunnelbodens liegt dabei auf der \(x\)-Achse, sein Mittelpunkt \(M\) im Ursprung des Koordinatensystems; eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität. Für den Tunnelquerschnitt sollen folgende Bedingungen gelten:

    I   Breite des Tunnelbodens: b = 10 m

    II  Höhe des Tunnels an der höchsten Stelle: h = 5 m

    III Der Tunnel ist auf einer Breite von mindestens 6 m mindestens 4 m hoch.

    Abbildung zu Teilaufgabe 1 - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    Eine erste Modellierung des Querschnitts der Tunnelwand verwendet die Funktion \(p \colon x \mapsto -0{,}2x^{2} + 5\) mit dem Definitionsbereich \(D_{p} = [-5;5]\).

    Zeigen Sie, dass die Bedingungen I und II in diesem Modell erfüllt sind. Berechnen Sie die Größe des spitzen Winkels, unter dem bei dieser Modellierung die linke Tunnelwand auf den Tunnelboden trifft.

    (6 BE)

  • Überprüfen Sie rechnerisch, ob das Fenster bei seiner Drehung am Möbelstück anstoßen kann.

    (5 BE)

  • Zeigen Sie, dass dieser Abstand mit der minimalen Entfernung des Hubschraubers vom Mittelpunkt des Grundstücks übereinstimmt, der im Modell durch den Punkt \(M(-40|30|30)\) dargestellt wird.

    (5 BE)

  • Unter dem Wasserdurchfluss eines Bachs an einer bestimmten Stelle versteht man das Volumen des Wassers, das an der Stelle in einer bestimmten Zeit vorbeifließt. Die Funktion \(f\) beschreibt die zeitliche Entwicklung des Wasserdurchflusses eines Bachs an einer Messstelle, nachdem zum Zeitpunkt \(t = 0\) eine bachaufwärts gelegene Schleuse geöffnet wurde. Abbildung 3 zeigt den Graphen \(G_f\) von \(f\,\).

    Abbildung 3

    Abb. 3

    Entnehmen Sie Abbildung 3 im Bereich \(t > 1\) Näherungswerte für die Koordinaten des Hochpunkts sowie für die \(t\)-Koordinaten der beiden Wendepunkte von \(G_f\) und geben Sie unter Berücksichtigung dieser Näherungswerte die jeweilige Bedeutung der genannten Punkte im Sachzusammenhang an.

    (5 BE)

  • Im Intervall \(]0;2[\) gibt es eine Stelle \(x_0\), an der der Wert der Differenz \(d(x) = q(x) - p(x)\) maximal wird. Berechnen Sie \(x_0\) sowie den Wert der zugehörigen Differenz.

    (5 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(\displaystyle g \colon x \mapsto x \cdot e^{-2x}\,\).

    Bestimmen Sie die Koordinaten des Punktes, in dem der Graph von \(g\) eine waagrechte Tangente hat.

    (5 BE)

  • Bestimmen Sie rechnerisch die Koordinaten desjenigen Graphenpunkts \(Q_E(x_E|y_E)\), der von \(P\) den kleinsten Abstand hat. Tragen Sie \(Q_E\) in Abbildung 1 ein.

    (zur Kontrolle: \(x_E = 1\))

    (7 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f : x \mapsto 6 \cdot e^{-0{,}5x} + x\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

     

    Untersuchen Sie das Monotonie- und das Krümmungsverhalten von \(G_f\). Bestimmen Sie Lage und Art des Extrempunkts \(E(x_E|y_E)\) von \(G_f\).

    (zur Kontrolle: \(x_E = 2 \cdot \ln 3; \enspace f''(x) = 1{,}5 \cdot e^{-0{,}5x}\))

    (10 BE)

Seite 3 von 4