Funktionenschar

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{a} \colon x \mapsto xe^{ax}\) mit \(a \in \mathbb R \, \backslash \,\{0\}\). Ermitteln Sie, für welchen Wert von \(a\) die erste Ableitung von \(f_{a}\) an der Stelle \(x = 2\) den Wert 0 besitzt.

    (4 BE)

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{n} \colon x \mapsto x^4 - 2x^n\) mit \(n \in \mathbb N\) sowie die in \(\mathbb R\) definierte Funktion \(f_{0} \colon x \mapsto x^4 - 2\).

    Die Abbildungen 1 bis 4 zeigen die Graphen der Funktionen \(f_{0}\), \(f_{1}\), \(f_{2}\) bzw. \(f_{4}\). Ordnen Sie jeder dieser Funktionen den passenden Graphen zu und begründen Sie drei Ihrer Zuordnungen durch Aussagen zur Symmetrie, zu den Schnittpunkten mit den Koordinatenachsen oder dem Verhalten an den Grenzen des Definitionsbereichs des jeweiligen Graphen.

    Abbildung 1 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Abbildung 2 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Abbildung 3 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 3

    Abbildung 4 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 4

     

    (4 BE)

  • Betrachtet werden nun die Funktionen \(f_{n}\) mit \(n > 4\). Geben Sie in Abhängigkeit von \(n\) das Verhalten dieser Funktionen für \(x \to +\infty\) und für \(x \to -\infty\) an.

    (3 BE)

  • Für jeden Wert von \(a\) mit \(a \in \mathbb R^{+}\) ist eine Funktion \(f_{a}\) durch \(f_{a}(x) = \dfrac{1}{a} \cdot x^{3} - x\) mit \(x \in \mathbb R\) gegeben.

    Eine der beiden Abbildungen stellt einen Graphen von \(f_{a}\) dar. Geben Sie an, für welche Abbildung dies zutrifft. Begründen Sie Ihre Antwort.

    Abbildung 1 Aufgabe 5a Analysis 1 Mathematik Abitur Bayern 2018 A
    Abbildung 2 Analysis 1 Mathematik Abitur Bayern 2018 A

     

    (2 BE)

  • Für jeden Wert von \(a\) besitzt der Graph von \(f_{a}\) genau zwei Extrempunkte. Ermitteln Sie denjenigen Wert von \(a\), für den der Graph der Funktion \(f_{a}\) an der Stelle \(x = 3\) einen Extrempunkt hat.

    (3 BE)

  • Für jeden Wert von \(a\) mit \(a \in \mathbb R^{+}\) ist eine Funktion \(f_{a}\) durch \(f_{a}(x) = \dfrac{1}{a} \cdot x^{3} - x\) mit \(x \in \mathbb R\) gegeben.

    Eine der beiden Abbildungen stellt einen Graphen von \(f_{a}\) dar. Geben Sie an, für welche Abbildung dies zutrifft. Begründen Sie Ihre Antwort.

    Abbildung 1 Aufgabe 5a Analysis 1 Mathematik Abitur Bayern 2018 A
    Abbildung 2 Analysis 1 Mathematik Abitur Bayern 2018 A

     

    (2 BE)

  • Für jeden Wert von \(a\) besitzt der Graph von \(f_{a}\) genau zwei Extrempunkte. Ermitteln Sie denjenigen Wert von \(a\), für den der Graph der Funktion \(f_{a}\) an der Stelle \(x = 3\) einen Extrempunkt hat.

    (3 BE)

  • Betrachtet wird eine Schar von Funktionen \(h_{k}\) mit \(k \in \mathbb R^{+}\), die sich nur in ihren jeweiligen Definitionsbereichen \(D_{k}\) unterscheiden.

    Es gilt \(h_{k} \colon x \mapsto \cos{x}\) mit \(D_{k} = [0;k]\).

    Abbildung 4 zeigt den Graphen der Funktion \(h_{7}\). Geben Sie den größtmöglichen Wert von \(k\) an, sodass die zugehörige Funktion \(h_{k}\) umkehrbar ist. Zeichnen Sie für diesen Wert von \(k\) den Graphen der Umkehrfunktion von \(h_{k}\) in Abbildung 4 ein und berücksichtigen Sie dabei insbesondere den Schnittpunkt der Graphen von Funktion und Umkehrfunktion.

    Abbildung 4 Aufgabe 4 Analysis 1 Mathematik Abitur Bayern 2019 A

    (3 BE)

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(p_{k} \colon x \mapsto kx^{2} - 4x - 3\) mit \(k \in \mathbb R \backslash \{0\}\), deren Graphen Parabeln sind.

    Bestimmen Sie den Wert von \(k\) so, dass der Punkt \((2|-3)\) auf der zugehörigen Parabel liegt.

    (2 BE)

  • Ermitteln Sie diejenigen Werte von \(k\), für die die jeweils zugehörige Funktion \(p_{k}\) keine Nullstelle besitzt.

    (3 BE)

  • Bestimmen Sie die \(x\)-Koordinate von \(W_{k}\) in Abhängigkeit von \(k\).

    (zur Kontrolle: \(x = -\frac{1}{k} - 1\))

    (3 BE)

  • Bestimmen Sie den Wert von \(k\) so, dass der zugehörige Wendepunkt \(W_{k}\) auf der \(y\)-Achse liegt. Zeigen Sie, dass in diesem Fall der Punkt \(W_{k}\) im Koordinatenursprung liegt und die Wendetangente, d. h. die Tangente an \(G_{k}\) im Punkt \(W_{k}\), die Steigung \(9\) hat.

    (4 BE)

  • Gegeben ist eine in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto ax^{2} + c\) mit \(a, c \in \mathbb R\), deren Graph im Punkt \(N(1|0)\) die Tangente mit der Gleichung \(y = -x + 1\) besitzt. Bestimmen Sie \(a\) und \(c\).

    (3 BE)

  • Betrachtet wird die Schar der Funktionen \(f_{a,b,c} \,\colon x \mapsto \dfrac{ax + b}{x^{2} + c}\) mit \(a, b, c \in \mathbb R\) und maximaler Definitionsmenge \(D_{a,b,c}\).

    Die Funktion \(f\) aus Aufgabe 1 ist eine Funktion dieser Schar. Geben Sie die zugehörigen Werte von \(a\), \(b\) und \(c\) an.

    (1 BE)

  • Für einen bestimmten Wert von \(k\) besitzt \(G_{k}\) zwei Schnittpunkte mit der \(x\)-Achse, die voneinander den Abstand 4 haben. Berechnen Sie diesen Wert.

    (3 BE)

  • Gegeben ist die Schar der Funktionen \(f_a : x \mapsto 6 \cdot e^{-0{,}5x} - a \cdot x\) mit \(a \in \mathbb R^+\) und Definitionsmenge \(\mathbb R\).

     

    Weisen Sie nach, dass die Graphen aller Funktionen der Schar die \(y\)-Achse im selben Punkt schneiden und in \(\mathbb R\) streng monoton fallend sind. Zeigen Sie, dass \(\lim \limits_{x \, \to \, +\infty} f_a(x) = -\infty\) gilt.

    (5 BE)

  • Die Anzahl der Nullstellen von \(g_c\) hängt von \(c\) ab. Geben Sie jeweils einen möglichen Wert von \(c\) an, sodass gilt:

    α) \(g_c\) hat keine Nullstelle.

    β) \(g_c\) hat genau eine Nullstelle.

    γ) \(g_c\) hat genau zwei Nullstellen.

    (3 BE)

  • Im Folgenden wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_c \colon x \mapsto f(x) + c\) mit \(c \in \mathbb R\) betrachtet.

    Geben Sie in Abhängigkeit von \(c\) ohne weitere Rechnung die Koordinaten des Hochpunkts des Graphen von \(g_c\) sowie das Verhalten von \(g_c\) für \(x \to + \infty\) an.

    (2 BE)

Seite 3 von 3