Lösungsformel für quadratische Gleichungen (Mitternachtsformel)

  • a) Bestimmen Sie den Grenzwert \(\lim \limits_{x\,\to\,2} f(x)\) mit \(f(x) = \dfrac{4x^2-6x-4}{x-2}\).

    (Zwischenergebnis: \(x = 2\) ist Nullstelle von \(f\))

    b) Die Grenzwertbetrachtung lässt auf eine besondere Eigenschaft der gebrochrationalen Funktion \(f\) schließen. Geben sie diese an und beschreiben Sie kurz wie sich der Graph von \(f\) an der Stelle \(x = 2\) verhält.

  • Bestimmen Sie die Ableitung der Funktion \(f\)mit \(f(x) = 0{,}5x^2 + 3x\) an der Stelle \(x = -2\) mithilfe des Differentialquotienten. Tipp: Verwenden Sie die h-Methode.

  • Aufgabe 1

    Bestimmen Sie die Ableitung der Funktion \(f\)mit \(f(x) = 0{,}5x^2 + 3x\) an der Stelle \(x = -2\) mithilfe des Differentialquotienten. Tipp: Verwenden Sie die h-Methode.

     

    Aufgabe 2

    Abbildung Aufgabe 5 Klausur Q11/2-005

    Die Abbildung zeigt den Graphen einer Funktion \(p\).

    a) Bestimmen Sie mithilfe der Abbildung die mittlere Änderungsrate von \(p\) im Intervall \([-2;2]\) und veranschaulichen Sie Ihre Vorgehensweise durch geeignete Eintragungen in die Abbildung. Entscheiden Sie, ob es im dargestellten Bereich des Graphen \(G_p\) ein Intervall gibt, in dem die mittlere Änderungsrate von \(p\) kleiner als null ist. Begründen Sie Ihre Entscheidung kurz.

    b) Erklären Sie die Bedeutung des Grenzwerts \(\lim \limits_{x\,\to\,-2}\dfrac{p(x) - p(-2)}{x + 2}\). Veranschaulichen Sie diesen in der Abbildung und bestimmen Sie damit näherungsweise den Grenzwert.

     

    Aufgabe 3

    Abbildung Aufgabe 3 Klausur Q11/2-005, Graph einer Funktion k

    Die Abbildung zeigt den Graphen \(G_k\) einer Funktion \(k\).

    a) Begründen Sie, dass \(k\) an der Stelle \(x = 6\) nicht differenzierbar ist, indem Sie mithilfe der Abbildung zugehörige Grenzwerte angeben und daraus schlussfolgern.

    b) Skizzieren Sie in der Abbildung den Graphen der Ableitungsfunktion \(k'\). Achten Sie auf ausreichende Genauigkeit.

     

    Aufgabe 4

    Die Tangente an den Graphen der Funktion \(f\) mit \(f(x) = 0{,}5x^2\) im Punkt \(P(2|f(2))\) und die Normale bilden mit der \(x\)-Achse das Dreieck \(PQR\).

    a) Veranschaulichen Sie den Sachverhalt in einer Skizze.

    b) Berechnen Sie den Flächeninhalt sowie die Innenwinkel des Dreiecks.

     

    Aufgabe 5

    Abbildung Klausur Q11/2-005 Aufgabe5, modellhafter Verlauf einer Wasserrrutsche 

    Die Abbildung zeigt modellhaft den Verlauf einer Wasserrutsche, der näherungsweise durch die Funktion \(f \colon x \mapsto 0{,}01x^3 -0{,}3x^2 + 2{,}25x\) mit \(D_f = [0:14]\) beschrieben wird. Eine Längeneinheit im Koordinatensystem entspricht 0,5 m in der Realität.

    a) Bestimmen Sie die maximale Höhe der Rutsche durch Rechnung.

    b) Berechnen Sie das mittlere Gefälle der Rutsche im Intervall \([6;10]\).

    c) Beschreiben Sie die wesentlichen Schritte, um die steilste Stelle der Rutsche im Intervall \([5;14]\) rechnerisch zu ermitteln.

     

    Aufgabe 6

    Die Graphen der Funktionen \(f \colon x \mapsto 0{,}5x^2 - 3x + 4\) und \(g \colon x \mapsto x^3 - x+1\) besitzen genau einen gemeinsamen Punkt. Berechnen Sie die \(x\)-Koordinate dieses Punktes mit dem Newton-Verfahren auf zwei Dezimalen genau. Wählen Sie als Startwert \(x_0 = 1\).

    (Zur Kontrolle: \(x\)-Koordinate des gemeinsamen Punktes: \(\approx 1{,}11617\))

  • Aufgabe 1

    Gegeben ist die Funktion \(f\) mit \(f(x) = -\dfrac{3}{x - 2}\).

    a) Bestimmen Sie \(\lim \limits_{x\,\to\,-\infty}f(x)\) und \(\lim \limits_{x\,\to\,+\infty}f(x)\). Beschreiben Sie Ihre Ergebnisse in Worten und interpretieren Sie diese graphisch.

    b) Der Graph der Funktion \(g\) geht aus dem Graphen der Funktion \(f\) durch Verschiebung in \(x\)-Richtung und in \(y\)-Richtung hervor, wobei er die Asymptoten mit den Gleichungen \(x = 3\) und \(y = -2\) besitzt. Geben Sie die zugehörige Verschiebung in \(x\)-Richtung und in \(y\)-Richtung an sowie einen Funktionsterm von \(g\).

    c) Der Graph der Funktion \(h\) entsteht aus dem Graphen der Funktion \(f\) durch eine Streckung mit dem Faktor 3 in \(y\)-Richtung und eine anschließende Verschiebung um 2 in \(y\)-Richtung. Der Graph der Funktion \(k\) entsteht aus dem Graphen der Funktion \(f\) durch die angegebene Streckung und Verschiebung in umgekehrter Reihenfolge. Entscheiden Sie, ob folgende Aussage richtig ist: „Die Funktionsterme von \(h\) und \(k\) unterscheiden sich." Begründen Sie ihre Entscheidung.

     

    Aufgabe 2

    Graph einer Funktion f, Auf Stetigkeit zu beurteilende Stellen x₁,x₂ und x₃

    a) Die Abbildung zeigt den Graphen einer Funktion \(f\). Erläutern Sie anhand des Graphen, ob die Funktion \(f\) an den Stellen \(x_1\), \(x_2\) und \(x_3\) jeweils stetig ist.

    b) Gegeben ist die Funktion

    \[g \colon x \mapsto \begin{cases} \begin{align*} &ax + a &&\text{für} \; x < 1 \\[0.8em] &-2 &&\text{für}\;1 \leq x < 5 \\[0.8em] &b \cdot (x^3 - 10x^2 + 25x)-2 &&\text{für}\;x \geq 5 \end{align*} \end{cases}\enspace\text{mit}\;a, b \in \mathbb R\]

    Bestimmen Sie den Wert von \(a\) so, dass \(g\) an der Stelle \(x = 1\) stetig ist und zeigen Sie, dass \(g\) an der Stelle \(x = 5\) unabhängig vom Wert von \(b\) stetig ist.

      

    Aufgabe 3

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{x(x-3)}{(x-2)^2}\) mit maximaler Definitionsmenge \(D_f\).

    a) Geben Sie \(D_f\) an und entscheiden Sie, welcher der Graphen I bis IV den Graphen der Funktion \(f\) darstellt. Begründen Sie Ihre Entscheidung.

    Klausur Q11/1-005 Aufgabe1 Graph I

    Klausur Q11/1-005 Aufgabe1 Graph II

     

    Klausur Q11/1-005 Aufgabe1 Graph III

    Klausur Q11/1-005 Aufgabe1 Graph IV

    b) Graph IV zeigt den Graphen einer gebrochenrationalen Funktion \(g\), der eine schräge Asymptote mit der Gleichung \(y = -x + 4\) besitzt. Die Koordinaten der Schnittpunkte des Graphen von \(g\) mit den Koordinatenachsen sowie die Polstelle von \(g\) sind ganzzahlig.

    Geben Sie an, welcher der folgenden Funktionsterme die Funktion \(g\) beschreibt.

    \[\text{A}\quad\frac{1}{x - 2} -x +4\]

    \[\text{B}\quad-\frac{1}{x-2} -x +4\]

    \[\text{C}\quad\frac{1}{2-x} +x - 4\]

    \[\text{D}\quad\frac{1}{2-x}-x-4\]

     

    Aufgabe 4

    Gegeben ist die gebrochenrationale Funktion \(f \colon x \mapsto \dfrac{-2x-4}{x^3+6x^2+9x}\) mit maximaler Definitionsmenge \(D_f\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

    a) Geben Sie die Nullstelle von \(f\) an. Untersuchen Sie \(f\) auf Polstellen und geben Sie \(D_f\) an. Bestimmen Sie das Verhalten von \(G_f\) an den Definitionslücken.

    b) Untersuchen Sie \(G_f\) auf schräge oder waagrechte Asymptoten.

    c) Berechnen Sie \(f(-4)\) und \(f(1)\) und zeichnen Sie \(G_f\) im Bereich \(-7 < x < 4\) in ein Koordinatensystem.

     

    Aufgabe 5

    a) Bestimmen Sie den Grenzwert \(\lim \limits_{x\,\to\,2} f(x)\) mit \(f(x) = \dfrac{4x^2-6x-4}{x-2}\).

    (Zwischenergebnis: \(x = 2\) ist Nullstelle von \(f\))

    b) Die Grenzwertbetrachtung lässt auf eine besondere Eigenschaft der gebrochrationalen Funktion \(f\) schließen. Geben sie diese an und beschreiben Sie kurz wie sich der Graph von \(f\) an der Stelle \(x = 2\) verhält.

     

    Aufgabe 6

    Beim Fernsehsender „Sport TV" treten bei Live-Übertragungen mit einer Wahrscheinlichkeit von 4 % Bildstörungen auf. Wenn das Bild gestört ist, kommt es mit einer Wahrscheinlichkeit von 60 % auch zu Tonstörungen. Bei 13,6 % der Übertragungen kommt es zu Bild- oder Tonstörungen.

    Betrachte werden folgende Ereignisse:

    \(B\): „Es tritt eine Bildstörung bei der Live-Übertragung auf",

    \(T\): „Es tritt eine Tonstörung bei der Live-Übertragung auf".

    a) Zeigen Sie, dass bei 12 % aller Live-Übertragungen Tonstörungen auftreten.

    b) Berechnen Sie die Wahrscheinlichkeit dafür, dass bei einer Live-Übertragung

    1. ein einwandfreies Bild empfangen wird, falls der Ton gestört ist.
    2. Bild oder Ton einwandfrei empfangen werden.

    c) Untersuchen Sie, ob die Ereignisse \(B\) und \(T\) stochastisch unabhängig sind.

  • Aufgabe 1

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{8x}{x^{2} + 4}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie den maximalen Definitionsbereich der Funktion \(f\) und ermitteln Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs. Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    c) Weisen Sie nach, dass der Graph \(G_{f}\) durch den Koordinatenursprung \(O(0|0)\) verläuft und berechnen Sie die Größe des Winkels, unter dem \(G_{f}\) die \(x\)-Achse schneidet.

    (Teilergebnis: \(f'(x) = -\dfrac{8(x^{2} - 4)}{(x^{2} + 4)^{2}}\))

    d) Bestimmen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

    e) Zeichnen Sie den Graphen \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

     

    Aufgabe 2

    Der Graph \(G_{f}\) einer gebrochenrationalen Funktion \(f\) hat folgende Eigenschaften:

    \(G_{f}\) hat genau die zwei Nullstellen \(x = 0\) und \(x = 4\).

    \(G_{f}\) hat genau die zwei Polstellen mit Vorzeichenwechsel \(x = -1\) und \(x = 2\).

    \(G_{f}\) hat eine waagrechte Asymptote mit der Gleichung \(y = 2\).

     

    a) Geben Sie einen möglichen Funktionsterm der Funktion \(f\) an und skizzieren Sie den Graphen der Funktion \(f\).

    b) „Der Funktionsterm \(f(x)\) ist durch die genannten Eigenschaften eindeutig bestimmt." Nehmen Sie zu dieser Aussage begründend Stellung.

     

    Aufgabe 3

    Gegeben ist die in \(\mathbb R\) definierte  Funktionenschar \(f_{a}(x) = x^{3} - ax + 3\) mit \(a \in \mathbb R\). Die Kurvenschar der Funktionenschar \(f_{a}\) wird mit \(G_{f_{a}}\) bezeichnet.

     

    Bestimmen Sie den Wert des Parameters \(a\) so, dass der zugehörige Graph der Kurvenschar \(G_{f_{a}}\)

    a) zwei Extrempunkte

    b) einen Terrassenpunkt

    besitzt.

     

    Aufgabe 4

    Abbildung zu Aufgabe 4 Klausur Q11/1-004

    Nach der Einnahme eines Medikaments wird die Konzentration \(K\) des Medikaments im Blut eines Patienten gemessen.

    Die Funktion \(K \colon t \mapsto \dfrac{100t}{t^{2} + 25}\) mit \(t \geq 0\) beschreibt näherungsweise den Verlauf \(K(t)\) der Konzentration des Medikaments in Milligramm pro Liter in Abhängigkeit von der Zeit \(t\) in Stunden (vgl. Abbildung).

     

    a) Bestimmen Sie den Zeitpunkt nach der Einnahme des Medikaments, zu dem die Konzentration \(K\) des Medikaments im Blut des Patienten noch 10 % der maximalen Konzentration beträgt auf Minuten genau.

    (Teilergebnis: \(K'(t) = -\dfrac{100(t^{2} - 25)}{(t^{2} + 25)^{2}}\))

    b) Berechnen Sie die mittlere Änderungsrate der Konzentration \(K\) im Zeitintervall \([10;20]\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

     

    Aufgabe 5

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto f(x)\) mit

     

    \[f(x) = \vert 2x - 4 \vert = \begin{cases} \begin{align*} 2x - 4 \; \text{falls} \; &x \geq 0 \\[0.8em] -(2x - 4) \; \text{falls} \; &x < 0 \end{align*} \end{cases}\]

     

    Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Skizzieren Sie \(G_{f}\) in ein geeignetes Koordinatensystem und begründen Sie geometrisch, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

    b) Bestätigen Sie durch Rechnung, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

  • Abbildung zu Aufgabe 4 Klausur Q11/1-004

    Nach der Einnahme eines Medikaments wird die Konzentration \(K\) des Medikaments im Blut eines Patienten gemessen.

    Die Funktion \(K \colon t \mapsto \dfrac{100t}{t^{2} + 25}\) mit \(t \geq 0\) beschreibt näherungsweise den Verlauf \(K(t)\) der Konzentration des Medikaments in Milligramm pro Liter in Abhängigkeit von der Zeit \(t\) in Stunden (vgl. Abbildung).

     

    a) Bestimmen Sie den Zeitpunkt nach der Einnahme des Medikaments, zu dem die Konzentration \(K\) des Medikaments im Blut des Patienten noch 10 % der maximalen Konzentration beträgt auf Minuten genau.

    (Teilergebnis: \(K'(t) = -\dfrac{100(t^{2} - 25)}{(t^{2} + 25)^{2}}\))

    b) Berechnen Sie die mittlere Änderungsrate der Konzentration \(K\) im Zeitintervall \([10;20]\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

  • Der Graph der in \(\mathbb R\) definierten Funktion \(h\,\colon x \mapsto -\frac{1}{2}x^2 + 2x + 4\) ist die Parabel \(G_h\). Der Graph der in Aufgabe 1e betrachteten Umkehrfunktion \(f^{-1}\) ist ein Teil dieser Parabel.

    Berechnen Sie die Koordinaten der Schnittpunkte von \(G_h\) mit der durch die Gleichung \(y = x\) gegebenen Winkelhalbierenden \(w\) des I. und III. Quadranten.

    (Teilergebnis: x-Koordinaten der Schnittpunkte: -2 und 4)

    (3 BE)

  • Die Geschäftsführung will im Mittel für einen Einkauf einen Rabatt von 16 % gewähren. Berechnen Sie für diese Vorgabe den Wert der Wahrscheinlichkeit \(p\).

    (3 BE)

  • In einem anderen Becken ändert sich das Volumen des darin enthaltenen Wassers ebenfalls durch Zu- und Abfluss. Die momentane Änderungsrate des Volumens wird für \(0 \leq t \leq 12\) modellhaft durch die in \(\mathbb R\) definierte Funktion \(g \colon t \mapsto 0{,}4 \cdot (2t^{3} - 39t^{2} + 180t)\) beschrieben. Dabei ist \(t\) die seit Beobachtungsbeginn vergangene Zeit in Stunden und \(g(t)\) die momentane Änderungsrate des Volumens in \(\frac{\sf{m^{3}}}{\sf{h}}\).

    Begründen Sie, dass die Funktionswerte von \(g\) für \(0 < t < 7{,}5\) positiv und für \(7{,}5 < t < 12\) negativ sind.

    (4 BE)

  • Die Größen der Sektoren werden geändert. Dabei werden der grüne und der rote Sektor verkleinert, wobei der Mittelpunktswinkel des roten Sektors wieder doppelt so groß wie der des grünen Sektors ist. Die Abbildung zeigt einen Teil eines Baumdiagramms, das für das geänderte Glücksrad die beiden ersten Drehungen beschreibt. Ergänzend ist für einen Pfad die zugehörige Wahrscheinlichkeit angegeben.

    Abbildung Aufgabe 2c Stochastik 2 Mathematik Abitur Bayern 2018

    Bestimmen Sie die Größe des zum grünen Sektor gehörenden Mittelpunktswinkels.

    (5 BE)

  • Ermitteln Sie diejenigen Werte von \(k\), für die die jeweils zugehörige Funktion \(p_{k}\) keine Nullstelle besitzt.

    (3 BE)

  • Das Medikament zeigt die gewünschte Wirkung erst ab einer bestimmten Wirkstoffkonzentration. Daher soll der Patient nach der ersten Tablette des Medikaments eine zweite identisch wirkende Tablette einnehmen, noch bevor die Konzentration des Wirkstoffs im Blut unter 0,75\(\frac{\sf{mg}}{\sf{l}}\) fällt. Nach der Einnahme der zweiten Tablette erhöht sich die Wirkstoffkonzentration um die durch diese Tablette verursachte Konzentration des Wirkstoffs im Blut.

    Ermitteln Sie durch Rechnung den spätesten Zeitpunkt, zu dem die zweite Tablette eingenommen werden soll.

    (4 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto x^{2} + 4\) und \(g_{m} \colon x \mapsto m \cdot x\) mit \(m \in \mathbb R\). Der Graph von \(f\) wird mit \(G_{f}\) und der Graph von \(g_{m}\) mit \(G_{m}\) bezeichnet.

    Skizzieren Sie \(G_{f}\) in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen \(G_{f}\) und \(G_{4}\).

    (3 BE)

  • Es gibt Werte von \(m\), für die die Graphen \(G_{f}\) und \(G_{m}\) jeweils keinen gemeinsamen Punkt haben. Geben Sie diese Werte von \(m\) an.

    (2 BE)

  • Der Punkt \(T(7|10|0)\) liegt auf der Kante \([A_{3}A_{4}]\). Untersuchen Sie rechnerisch, ob es Punkte auf der Kante \([B_{3}B_{4}]\) gibt, für die gilt: Die Verbindungsstrecken des Punktes zu den Punkten \(B_{1}\) und \(T\) stehen aufeinander senkrecht. Geben Sie gegebenenfalls die Koordinaten dieser Punkte an.

    (6 BE)

  • Für die erste Ableitung von \(f_{a,b,c}\) gilt: \(f'_{a,b,c}(x) = -\dfrac{ax^{2} + 2bx - ac}{(x^{2} +c)^{2}}\).

    Zeigen Sie: Wenn \(a \neq 0\) und \(c > 0\) gilt, dann besitzt der Graph von \(f_{a,b,c}\) genau zwei Extrempunkte.

    (4 BE)

  • Eine auf einem Hausdach installierte Photovoltaikanlage wandelt Lichtenergie in elektrische Energie um. Für \(4 \leq x \leq 20\) beschreibt die Funktion \(p\) modellhaft die zeitliche Entwicklung der Leistung der Anlage an einem bestimmten Tag. Dabei ist \(x\) die seit Mitternacht vergangene Zeit in Stunden und \(p(x)\) die Leistung in kW (Kilowatt).

    Bestimmen Sie rechnerisch die Uhrzeit am Nachmittag auf Minuten genau, ab der die Leistung der Anlage weniger als 40 % ihres Tageshöchstwerts von 10 kW beträgt.

    (4 BE)

  • Bestimmen Sie rechnerisch die \(x\)-Koordinaten der beiden Extrempunkte von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = (x^{2} - 2x - 1) \cdot e^{-x}\))

    (4 BE)

  • Bestimmen Sie, wie groß \(n\) mindestens sein muss, damit die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, größer als 90 % ist.

     (3 BE)

Seite 1 von 2