Mathematik Abitur Bayern 2024

  • Betrachtet wird die Schar der in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = x \cdot e^{ax}\) und \(a \in \mathbb R \backslash\{0\}\). Für jeden Wert von \(a\) besitzt die Funktion \(f_a\) genau eine Extremstelle.

    Begründen Sie, dass der Graph von \(f_a\) für \(x<0\) unterhalb der \(x\)-Achse verläuft.

    (2 BE)

  • Ermitteln Sie anhand der Abbildung einen Näherungswert für das Integral \(\displaystyle \int_{-2}^2 f(x)dx\).

    (3 BE)

  • Betrachtet wird die Schar der in \(\mathbb R \backslash \{-3\}\) definierten Funktionen \(f_k \colon x \mapsto \dfrac{x^2-k}{x+3}\) mit \(k \in \mathbb R \backslash \{9\}\). Der Graph von \(f_k\) wird mit \(G_k\) bezeichnet. Die Funktion \(f\) aus Aufgabe 1 ist somit die Funktion \(f_4\) dieser Schar.

    Geben Sie die Anzahl der Nullstellen von \(f_k\) in Abhängigkeit von \(k\) an und begründen Sie, dass die Funktion \(f_0\) der Schar eine Nullstelle ohne Vorzeichenwechsel hat.

    (4 BE)

  • Berechnen Sie die mittlere Steigung des Graphen von \(f\) im Bereich \(-1 \leq x \leq 1\) auf Hundertstel genau und bestimmen Sie grafisch die Steigung des Graphen von \(f\) in seinem Wendepunkt.

    (5 BE)

  • Es gibt einen Punkt \(P(0|0|p)\), der im Inneren der Pyramide liegt und von allen vier Seitenflächen sowie der Grundfläche der Pyramide den gleichen Abstand hat. Mithilfe des folgenden Gleichungssystems lässt sich der Wert von \(p\) bestimmen:

    \[\textsf{I} \quad \overrightarrow{Q} = \begin{pmatrix} 0\\0\\p \end{pmatrix}+ t \cdot \begin{pmatrix} 0\\4\\3 \end{pmatrix}\]

    \[\textsf{II} \quad 4 \cdot 4t + 3 \cdot (p+3t) -12 = 0 \vphantom{\begin{pmatrix} 0\\0\\p \end{pmatrix}}\]

    \[\textsf{III} \quad \vert \overrightarrow{PQ} \vert = p \vphantom{\begin{pmatrix} 0\\0\\p \end{pmatrix}}\]

    Erläutern Sie die Überlegungen im geometrischen Zusammenhang, die diesem Vorgang zur Bestimmung des Werts von \(p\) zugrunde liegen.

    (5 BE)