Mathematik Abitur Bayern 2024

  • Betrachtet wird die Schar der in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = x \cdot e^{ax}\) und \(a \in \mathbb R \backslash\{0\}\). Für jeden Wert von \(a\) besitzt die Funktion \(f_a\) genau eine Extremstelle.

    Begründen Sie, dass der Graph von \(f_a\) für \(x<0\) unterhalb der \(x\)-Achse verläuft.

    (2 BE)

  • Geben Sie einen Term einer in \(\mathbb R\) definierten Funktion \(g\) an, die den Wertebereich \([-2;4]\) hat.

    (2 BE)

  • Geben Sie einen Term einer in \(\mathbb R\) definierten Funktion \(h\) an, sodass der Term \(\sqrt{h(x)}\) genau für \(x \in [-2;4]\) definiert ist. Erläutern Sie die Ihrer Angabe zugrunde liegenden Überlegungen.

    (3 BE)

  • Ermitteln Sie anhand der Abbildung einen Näherungswert für das Integral \(\displaystyle \int_{-2}^2 f(x)dx\).

    (3 BE)

  • Betrachtet wird die Schar der in \(\mathbb R \backslash \{-3\}\) definierten Funktionen \(f_k \colon x \mapsto \dfrac{x^2-k}{x+3}\) mit \(k \in \mathbb R \backslash \{9\}\). Der Graph von \(f_k\) wird mit \(G_k\) bezeichnet. Die Funktion \(f\) aus Aufgabe 1 ist somit die Funktion \(f_4\) dieser Schar.

    Geben Sie die Anzahl der Nullstellen von \(f_k\) in Abhängigkeit von \(k\) an und begründen Sie, dass die Funktion \(f_0\) der Schar eine Nullstelle ohne Vorzeichenwechsel hat.

    (4 BE)

  • Berechnen Sie die mittlere Steigung des Graphen von \(f\) im Bereich \(-1 \leq x \leq 1\) auf Hundertstel genau und bestimmen Sie grafisch die Steigung des Graphen von \(f\) in seinem Wendepunkt.

    (5 BE)

  • Die Tabelle zeigt die Wahrscheinlichkeitsverteilung einer Zufallsgröße \(X\), die nur die Werte \(1\), \(2\), \(3\), \(4\) und \(5\) annehmen kann.

    \(k\)  \(1\) \(2\) \(3\) \(4\) \(5\)
    \(P(X = k)\) \(p_1\) \(p_2\) \(p_3\) \(0{,}2\) \(0{,}15\)

    Die Wahrscheinlichkeiten \(P(X = 4)\) und \(P(X = 5)\) sowie der Erwartungswert und die Varianz von \(X\) sind bekannt. Aus diesen Informationen ergibt sich das folgende Gleichungssystem, mit dem die fehlenden Wahrscheinlichkeiten \(p_1\), \(p_2\) und \(p_3\) berechnet werden können.

    \[\textsf{I} \enspace \; \;  p_1+p_2+p_3=0{,}65\]

    \[\textsf{II} \enspace \; p_1+2p_2+3p_3=1{,}45\]

    \[\textsf{III} \; \, 4p_1+p_2=0{,}6\]

    Ermitteln Sie, ohne das Gleichungssystem zu lösen, welche Werte für den Erwartungswert und die Varianz von \(X\) beim Aufstellen des Gleichungssystems verwendet worden sind.

    (4 BE)

  • Begründen Sie, dass die Größe des Schnittwinkels von \(g_k\) und der \(x_1x_2\)-Ebene weniger als 30° beträgt, wenn \(2k^2 > 1\) gilt.

    (5 BE)

  • Begründen Sie rechnerisch, dass die Skifahrerin das Tor tatsächlich durchquert.

    (4 BE)

  • Es gibt einen Punkt \(P(0|0|p)\), der im Inneren der Pyramide liegt und von allen vier Seitenflächen sowie der Grundfläche der Pyramide den gleichen Abstand hat. Mithilfe des folgenden Gleichungssystems lässt sich der Wert von \(p\) bestimmen:

    \[\textsf{I} \quad \overrightarrow{Q} = \begin{pmatrix} 0\\0\\p \end{pmatrix}+ t \cdot \begin{pmatrix} 0\\4\\3 \end{pmatrix}\]

    \[\textsf{II} \quad 4 \cdot 4t + 3 \cdot (p+3t) -12 = 0 \vphantom{\begin{pmatrix} 0\\0\\p \end{pmatrix}}\]

    \[\textsf{III} \quad \vert \overrightarrow{PQ} \vert = p \vphantom{\begin{pmatrix} 0\\0\\p \end{pmatrix}}\]

    Erläutern Sie die Überlegungen im geometrischen Zusammenhang, die diesem Vorgang zur Bestimmung des Werts von \(p\) zugrunde liegen.

    (5 BE)

  • Weisen Sie nach, dass die Größe des Winkels, unter dem die Gerade \(OS\) die Ebene \(E_k\) schneidet, unabhängig von \(k\) ist.

    (4 BE)