maximale Definitionsmenge / maximaler Definitionsbereich

  • Geben Sie die maximale Definitionsmenge der Funktion \(f : x \mapsto 3\sqrt{x}\;\) an und bestimmen Sie den Term derjenigen Stammfunktion von \(f\), deren Graph den Punkt \((1|4)\) enthält.

    (4 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \sqrt{3x + 9}\) mit maximaler Definitionsmenge \(D\).

    Bestimmen Sie \(D\) und geben Sie die Nullstelle von \(g\) an.

    (3 BE)

  • Geben Sie für die Funktion \(f\) mit \(f(x) = \ln (2013 - x)\) den maximalen Definitionsbereich \(D\), das Verhalten von \(f\) an den Grenzen von \(D\) sowie die Schnittpunkte des Graphen von \(f\) mit den Koordinatenachsen an.

    (5 BE)

  • Gegeben ist die Funktion \(\displaystyle f : x \mapsto \frac{2x + 3}{4x + 5}\) mit maximaler Definitionsmenge \(D\). Geben Sie \(D\) an und ermitteln Sie einen möglichst einfachen Funktionsterm für die Ableitung \(f'\) von \(f\).

    (4 BE)

Seite 4 von 4