Normalenvektor

  • Geben Sie eine Gleichung einer Geraden \(j\) an, die parallel zu \(H\) durch den Punkt \(Q\) verläuft.

    (2 BE)

  • Gegeben sind die Ebene \(H\;\colon\, 2x_1 + x_2 - x_3 = 4\) und der Punkt \(Q\,(-3|0|2)\).

    Spiegelt man den Punkt \(Q\) an der Ebene \(H\), so erhält man den Punkt \(Q'\). Ermitteln Sie die Koordinaten von \(Q'\).

    (2 BE)

  • Gegeben ist die Ebene \(E\;\colon\,2x_1 - x_2 + 2x_3 = 4\).

    Die Ebene \(E\) schneidet die \(x_1x_2\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\)

    (3 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Das Lot zur Ebene \(E\) im Punkt \(R\) wird als Einfallslot bezeichnet.

    Die beiden Geraden, entlang derer der einfallende und der reflektierte Lichtstrahl im Modell verlaufen, liegen in einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\) in Normalenform. Weisen Sie nach, dass das Einfallslot ebenfalls in der Ebene \(F\) liegt.

    (mögliches Teilergebnis: \(F\,\colon\, x_1 - x_2 = 0\)) 

    (5 BE)

  • Die Ebene \(E\) enthält die Punkte \(A\), \(B\) und \(C\), die Ebene \(F\) die Punkte \(B\), \(C\) und \(D\).

    Bestimmen Sie eine Gleichung von \(E\) in Koordinatenform.

    (zur Kontrolle: \(14x_1 + 14x_2 + 11x_3 = 308\))

    (4 BE)

  • In einem Modell für einen Küstenabschnitt am Meer beschreibt die \(x_1x_2\)-Ebene die horizontale Wasseroberfläche und die Gerade \(g\) die Uferlinie. Die Ebene \(E\) stellt im betrachteten Abschnitt den Meeresboden dar. Eine Boje schwimmt auf der Wasseroberfläche an der Stelle, die dem Koordinatenursprung \(O\) entspricht (vgl. Abbildung). Eine Längeneinheit entspricht einem Meter in der Realität.

    Abbildung Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2022

    Bestimmen Sie die Größe des Winkels, unter dem der Meeresboden gegenüber der Wasseroberfläche abfällt.

    (3 BE)

  • Im Zelt ist eine Lichtquelle so aufgehängt, dass sie von jeder der vier Wände einen Abstand von 50 cm hat. Ermitteln Sie die Koordinaten des Punkts, der im Modell die Lichtquelle darstellt.

    (4 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Die Ebene \(E\) hat die Gleichung \(2x_1 + x_2 + x_3 = 6\). Bestimmen Sie die Größe des Winkels, den \(E\) mit der \(x_1x_2\)-Ebene einschließt.

    (3 BE)

  • Ein Teil der Zeltwand, die im Modell durch das Dreieck \(CDS\) dargestellt wird, kann mithilfe zweier vertikal stehender Stangen der Länge 1,80 m zu einem horizontalen Vordach aufgespannt werden (vgl. Abbildung 2). Die dadurch entstehende 1,40 m breite Öffnung in der Zeltwand wird im Modell durch ein Rechteck dargestellt, das symmetrisch zu \(g\) liegt Dabei liegt eine Seite dieses Rechtecks auf der Strecke \([CD]\). Berechnen Sie den Flächeninhalt des Vordachs.

    Abbildung 2 Teilaufgabe f Geometrie 2 Mathematik Abitur Bayern 2017 B

     

    (5 BE)

  • Der Punkt \(L\), der vertikal über dem Mittelpunkt der Kante \([A_{1}A_{2}]\) liegt, veranschaulicht im Modell die Position einer Flutlichtanlage, die 12 m über der Grundfläche angebracht ist. Die als punktförmig angenommene Lichtquelle beleuchtet - mit Ausnahme des Schattenbereichs in der Nähe der Hallenwände - das gesamte Gelände um die Halle.

    Die Punkte \(L\), \(B_{2}\) und \(B_{3}\) legen eine Ebene \(F\) fest. Ermitteln Sie eine Gleichung von \(F\) in Normalenform.

    (zur Kontrolle: \(F \colon 3x_{1} + x_{2} + 5x_{3} - 90 = 0\))

    (5 BE)

  • Die Punkte \(A(1|1|1)\), \(B(0|2|2)\) und \(C(-1|2|0)\) liegen in der Ebene \(E\).

    Bestimmen Sie eine Gleichung von \(E\) in Normalenform.

    (4 BE)

  • Berechnen Sie die Größe des Schnittwinkels von \(g\) und \(E\) und zeigen Sie, dass \(S(0{,}5|6{,}5|0)\) der Schnittpunkt von \(g\) und \(E\) ist.

    (5 BE)

  • Berechnen Sie die Größe des Steigungswinkels der Flugbahn von \(F_1\) gegen die Horizontale.

    (4 BE)

  • In einem kartesischen Koordinatensystem sind die Ebene \(E \colon x_{1} + x_{3} = 2\), der Punkt \(A\left( 0|\sqrt{2}|2 \right)\) und die Gerade \(\displaystyle g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\), \(\lambda \in \mathbb R\), gegeben.

    Beschreiben Sie, welche besondere Lage die Ebene \(E\) im Koordinatensystem hat. Weisen Sie nach, dass die Ebene \(E\) die Gerade \(g\) enthält. Geben Sie die Koordinaten der Schnittpunkte von \(E\) mit der \(x_{1}\)-Achse und mit der \(x_{3}\)-Achse an und veranschaulichen Sie die Lage der Ebene \(E\) sowie den Verlauf der Geraden \(g\) in einem kartesischen Koordinatensystem (vgl. Abbildung).

    Abbildung zu Teilaufgabe a Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2015

     

    (6 BE)