Punktsymmetrie bezüglich des Koordinatenursprungs

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\) und \(g\). Der Graph von \(f\) ist symmetrisch bezüglich der \(y\)-Achse, der Graph von \(g\) ist symmetrisch bezüglich des Koordinatenursprungs. Beide Graphen haben einen Hochpunkt im Punkt \((2|1)\).

    1. Geben Sie für die Graphen von \(f\) und \(g\) jeweils die Koordinaten und die Art eines weiteren Extrempunkts an.
      (2 BE)
    2. Untersuchen Sie die in \(\mathbb R\) definierte Funktion \(h\) mit \(h(x) = f(x) \cdot \left( g(x) \right)^3\) im Hinblick auf eine mögliche Symmetrie ihres Graphen.
      (3 BE)
  • Begründen oder widerlegen Sie folgende Aussage:

    Wenn der Graph \(G_f\) einer gebrochenrationalen Funktion \(f\) punktsymmetrisch zum Koordinatenursprung ist, so hat \(f\) mindestens zwei Definitionslücken.

  • Geben Sie jeweils den Funktionsterm einer Funktion an, die folgende Eigenschaften besitzt:

    1. Die Funktion \(f\) besitzt die Wertemenge \([-2;2]\) und \(x = -\frac{\pi}{2}\) sowie \(x = \frac{\pi}{2}\) sind zwei Nullstellen von \(f\).
    2. Die Funktion \(g\) divergiert für \(x \to -\infty\) gegen \(+\infty\) und konvergiert für \(x \to +\infty\) gegen \(+3\).
    3. Der Graph der Funktion \(h\) ist punktsymmetrisch zum Koordinatenursprung. Er besitzt die Nullstelle \(x = 2\) und es gilt: \(\lim \limits_{x\, \to\, -\infty}h(x) = +\infty\).
  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\) und \(g\). Der Graph der Funktion \(f\) ist achsensymmetrisch zur \(y\)-Achse und der Graph der Funktion \(g\) ist punktsymmetrisch zum Koordinatenursprung.

    Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion \(h \colon x \mapsto f(x) \cdot \left[ g(x) \right]^4\) bezüglich des Koordinatensystems.

  • Aufgabe 1

    Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\) und \(g\). Der Graph der Funktion \(f\) ist achsensymmetrisch zur \(y\)-Achse und der Graph der Funktion \(g\) ist punktsymmetrisch zum Koordinatenursprung.

    Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion \(h \colon x \mapsto f(x) \cdot \left[ g(x) \right]^4\) bezüglich des Koordinatensystems.

     

    Aufgabe 2

    Geben Sie jeweils den Funktionsterm einer Funktion an, die folgende Eigenschaften besitzt:

    1. Die Funktion \(f\) besitzt die Wertemenge \([-2;2]\) und \(x = -\frac{\pi}{2}\) sowie \(x = \frac{\pi}{2}\) sind zwei Nullstellen von \(f\).
    2. Die Funktion \(g\) divergiert für \(x \to -\infty\) gegen \(+\infty\) und konvergiert für \(x \to +\infty\) gegen \(+3\).
    3. Der Graph der Funktion \(h\) ist punktsymmetrisch zum Koordinatenursprung. Er besitzt die Nullstelle \(x = 2\) und es gilt: \(\lim \limits_{x\, \to\, -\infty}h(x) = +\infty\).

     

    Aufgabe 3

    Abbildung zu Klausur 11/1-G902

    1. Beschreiben Sie mithilfe der Abbildung, wie der Graph von \(g\) aus dem Graphen von \(f\) hervorgeht. Geben Sie einen Funktionsterm von \(g\) an, indem Sie \(g\) durch \(f\) ausdrücken.
    2. Beschreiben Sie, wie der Graph der in \(\mathbb R\) definierten Funktion \(p\colon x \mapsto 4x^2 +8x +4\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(q\colon x \mapsto x^2\) hervorgeht.

     

    Aufgabe 4

    Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto 2^x + 3x + 4\) und \(g \colon x \mapsto 2^{x+1} + 6x -2\).

    Zeigen Sie, dass der Graph der Funktion \(g\) aus dem Graphen der Funktion \(f\) durch

    1. eine Streckung in \(y\)-Richtung mit dem Faktor \(2\) und
    2. eine Verschiebung in \(y\)-Richtung um \(-10\)

    hervorgeht. Begründen Sie, dass die Reihenfolge der Schritte von Bedeutung ist.

     

    Aufgabe 5

    Gegeben ist die Funktion \(h\) mit

    \[h \colon x \mapsto \begin{cases} \begin{align*} -2^{-x+1}+3 \enspace \text{für} \enspace x &\leq 2 \\[0.8em] \sin{(x-1)+0{,}5} \enspace \text{für} \enspace x &>2\end{align*} \end{cases}\]

    auf ihrem maximalen Definitionsbereich \(D_h = \mathbb R\).

    Untersuchen Sie die Funktion \(h\) auf Stetigkeit.

     

    Aufgabe 6

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{2x^2 - 8}{x^2 + x}\) mit maximaler Definitionsmenge \(D_f\).

    1. Bestimmen Sie \(D_f\) sowie die Nullstelle(n) von \(f\) und geben Sie die Gleichung(en) der senkrechten Asymptote(n) des Graphen von \(f\) an.
    2. Begründen Sie, dass \(y = 2\) die Gleichung der waagerechten Asymptote des Graphen von \(f\) ist.

     

    Aufgabe 7

    Geben Sie den Term einer gebrochenrationalen Funktion \(f\) an,

    1. deren Graph die senkrechten Asymptoten mit den Gleichungen \(x = -2\) und \(x = 3\), die doppelte Nullstelle \(x = 1\) sowie die waagrechte Asymptote mit der Gleichung \(y = 0\) besitzt.
    2. die in \(\mathbb R\) definiert ist und deren Graph die waagrechte Asymptote mit der Gleichung \(y = 1\) besitzt sowie die \(y\)-Achse bei \(3\) schneidet.

     

    Aufgabe 8

    Begründen oder widerlegen Sie folgende Aussage:

    Wenn der Graph \(G_f\) einer gebrochenrationalen Funktion \(f\) punktsymmetrisch zum Koordinatenursprung ist, so hat \(f\) mindestens zwei Definitionslücken.

  • Geben sie jeweils eine Integrandenfunktion \(f(x)\) und \(g(x)\) an, sodass die folgenden Gleichungen erfüllt sind.

    a) \(\displaystyle \int_{-a}^{+a} f(x) dx = 0; \; a \neq 0\)

    b) \(\displaystyle \int_{-1}^{3} g(x) dx = 8\)

  • Aufgabe 1

    Berechnen Sie folgende Integrale bzw. die Integrationsgrenze \(a\) mit \(a \in \mathbb N\). Geben Sie exakte Werte an.

    a) \(\displaystyle \int_{0}^{1} \frac{-6x^{2} + 6}{x^{3} - 3x + 3} dx\)

    b) \(\displaystyle \int_{-a}^{3a} (3t - 2) dt = 4\)

     

    c) \(\displaystyle \int_{1}^{\infty} \frac{3}{x^{2}} dx\)

    d) \(\displaystyle \int_{4}^{8} \left( e^{-2x} -\sin\left(\frac{\pi}{4}x\right) +\frac{2}{x-2} \right) dx\)

     

    Aufgabe 2

    Geben sie jeweils eine Integrandenfunktion \(f(x)\) und \(g(x)\) an, sodass die folgenden Gleichungen erfüllt sind.

    a) \(\displaystyle \int_{-a}^{+a} f(x) dx = 0; \; a \neq 0\)

    b) \(\displaystyle \int_{-1}^{3} g(x) dx = 8\)

     

    Aufgabe 3

    Gegeben sind die jeweils in \(\mathbb R\) definierten Funktionenscharen \(f_{a} \colon x \mapsto x(a^{2} - x^{2})\) und \(g_{a} \colon x \mapsto x(x - a)^{2}\) mit \(a \in \mathbb R^{+}\).

     

    a) Bestimmen Sie in Abhängigkeit des Parameters \(a\) den Flächeninhalt \(A(a)\) der Fläche, welche die Graphen der Funktionenscharen \(f\) und \(g\) begrenzen.

    b) Für welchen Wert des Parameters \(a\) ergibt sich der Flächeninhalt 13,5 FE (Flächeneinheiten)?

     

    Aufgabe 4

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \dfrac{1}{20}x^{5} + \dfrac{1}{12}x^{4} - \dfrac{1}{3}x^{3}\).

     

    Bestimmen Sie die Wendepunkte des Graphen \(G_{f}\) der Funktion \(f\) und geben Sie das Kümmungsverhalten von \(G_{f}\) an.

     

    Aufgabe 5

    Abbildung zu Klausur Q12/1 001 Aufgabe 5

    Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(R\) definierten Funktion \(f\).

     

    a) Skizzieren Sie den Graphen \(G_{F}\) der Integralfunktion \(F \colon x \mapsto \displaystyle \int_{0}^{x} f(t) dt\) in die Abbildung. Gehen Sie dabei insbesondere auf die Nullstellen und die Extremstelle von \(G_{f}\) sowie auf das Verhalten von \(G_{f}\) für \(x \to \pm \infty\) ein. Erläutern Sie Ihre Vorgehensweise.

    b) „Jede Stammfunktion der abgebildeten Funktion \(f\) ist eine Integralfunktion." Nehmen Sie zu dieser Aussage begründend Stellung, indem Sie sich auf \(G_{F}\) beziehen.

  • Geben Sie einen möglichen Term der Funktion \(t\) an. Zeigen Sie für dieses \(t\) die Gültigkeit der Aussage aus Aufgabe 3a durch Integration mithilfe einer Stammfunktion.

    (4 BE)

  • Der Graph einer in \(\mathbb R\) definierten integrierbaren Funktion \(t\) ist punktsymmetrisch bezüglich des Koordinatenursprungs.

    Begründen Sie, dass für alle \(a \in \mathbb R\) gilt: \(\displaystyle \int_{-a}^{a} t(x)\,dx = 0\).

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(\displaystyle f(x) = \frac{20x}{x^2 - 25}\) und maximalem Definitionsbereich \(D_f\). Die Abbildung zeigt einen Teil des Graphen \(G_f\) von \(f\).

    Abbildung zu Teilaufgabe 1a

    Zeigen Sie, dass \(D_f = \mathbb R \, \backslash \, \{-5;5\}\) gilt und dass \(G_f\) symmetrisch bezüglich des Koordinatenursprungs ist. Geben Sie die Nullstelle von \(f\) sowie die Gleichungen der drei Asymptoten von \(G_f\) an.

    (5 BE)

  • Skizzieren Sie in der Abbildung den darin fehlenden Teil von \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse.

    (3 BE)

  • Zeigen Sie, dass der Graph der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto x^{2} \cdot \sin{x}\) punktsymmetrisch bezüglich des Koordinatenursprungs ist, und geben Sie den Wert des Integrals \(\displaystyle \int_{-\pi}^{\pi} x^{2} \cdot \sin{x}\, dx\) an.

    (3 BE)

  • Die Funktion \(g\) ist nicht konstant und es gilt \(\displaystyle \int_{0}^{2} g(x) dx = 0\).

    (2 BE)

  • \(G_{f}\) geht aus dem Graphen der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto \frac{1}{18} \cdot (x^{3} - 25x)\) durch Verschiebung in positive \(x\)-Richtung hervor. Ermitteln Sie, um wie viel der Graph von \(g\) dazu verschoben werden muss. Begründen Sie mithilfe der Funktion \(g\), dass der Graph von \(f\) symmetrisch bezüglich seines Wendepunkts ist.

    (4 BE)

  • Gegeben ist die in \(\mathbb R \backslash \{-2;2\}\) definierte Funktion \(f \colon x \mapsto \dfrac{6x}{x^{2} - 4}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet und ist symmetrisch bezüglich des Koordinatenursprungs.

    Geben Sie die Gleichungen aller senkrechter Asymptoten von \(G_{f}\) an. Begründen Sie, dass \(G_{f}\) die \(x\)-Achse als waagrechte Asymptote besitzt.

    (3 BE)

  • Die Punkte \(A(3|3{,}6)\) und \(B(8|0{,}8)\) liegen auf \(G_{f}\); zwischen diesen beiden Punkten verläuft \(G_{f}\) unterhalb der Strecke \([AB]\).

    Skizzieren Sie \(G_{f}\) im Bereich \(-10 \leq x \leq 10\) unter Verwendung der bisherigen Informationen in einem Koordinatensystem.

    (4 BE)

  • Geben Sie für \(a\), \(b\) und \(c\) alle Werte an, sodass sowohl \(D_{a,b,c}  = \mathbb R\) gilt als auch, dass der Graph von \(f_{a,b,c}\) symmetrisch bezüglich des Koordinatenursprungs, aber nicht identisch mit der \(x\)-Achse ist.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = x \cdot e^{-\frac{1}{2}x^2+\frac{1}{2}}\). Die Abbildung 1 zeigt den Graphen von \(f\) ohne das zugrunde liegende Koordinatensystem.

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2022Abb. 1

    Zeigen Sie anhand des Funktionsterms von \(f\), dass der Graph von \(f\) symmetrisch bezüglich des Koordinatenursprungs ist. Begründen Sie, dass \(f\) genau eine Nullstelle hat, und geben Sie den Grenzwert von \(f\) für \(x \to +\infty\) an.

    (4 BE) 

  • Geben Sie den Term einer in \(\mathbb R\) definierten Funktion \(f\) an, sodass die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{-1}^x f(t)\,dt\) genau zwei Nullstellen besitzt. Geben Sie die Nullstellen von \(F\) an.

    (3 BE)

Seite 1 von 2