Quadratische Gleichung

  • a) Bestimmen Sie den Grenzwert \(\lim \limits_{x\,\to\,2} f(x)\) mit \(f(x) = \dfrac{4x^2-6x-4}{x-2}\).

    (Zwischenergebnis: \(x = 2\) ist Nullstelle von \(f\))

    b) Die Grenzwertbetrachtung lässt auf eine besondere Eigenschaft der gebrochrationalen Funktion \(f\) schließen. Geben sie diese an und beschreiben Sie kurz wie sich der Graph von \(f\) an der Stelle \(x = 2\) verhält.

  • Bestimmen Sie die Ableitung der Funktion \(f\)mit \(f(x) = 0{,}5x^2 + 3x\) an der Stelle \(x = -2\) mithilfe des Differentialquotienten. Tipp: Verwenden Sie die h-Methode.

  • Aufgabe 1

    Gegeben ist die Funktion \(f\) mit \(f(x) = -\dfrac{3}{x - 2}\).

    a) Bestimmen Sie \(\lim \limits_{x\,\to\,-\infty}f(x)\) und \(\lim \limits_{x\,\to\,+\infty}f(x)\). Beschreiben Sie Ihre Ergebnisse in Worten und interpretieren Sie diese graphisch.

    b) Der Graph der Funktion \(g\) geht aus dem Graphen der Funktion \(f\) durch Verschiebung in \(x\)-Richtung und in \(y\)-Richtung hervor, wobei er die Asymptoten mit den Gleichungen \(x = 3\) und \(y = -2\) besitzt. Geben Sie die zugehörige Verschiebung in \(x\)-Richtung und in \(y\)-Richtung an sowie einen Funktionsterm von \(g\).

    c) Der Graph der Funktion \(h\) entsteht aus dem Graphen der Funktion \(f\) durch eine Streckung mit dem Faktor 3 in \(y\)-Richtung und eine anschließende Verschiebung um 2 in \(y\)-Richtung. Der Graph der Funktion \(k\) entsteht aus dem Graphen der Funktion \(f\) durch die angegebene Streckung und Verschiebung in umgekehrter Reihenfolge. Entscheiden Sie, ob folgende Aussage richtig ist: „Die Funktionsterme von \(h\) und \(k\) unterscheiden sich." Begründen Sie ihre Entscheidung.

     

    Aufgabe 2

    Graph einer Funktion f, Auf Stetigkeit zu beurteilende Stellen x₁,x₂ und x₃

    a) Die Abbildung zeigt den Graphen einer Funktion \(f\). Erläutern Sie anhand des Graphen, ob die Funktion \(f\) an den Stellen \(x_1\), \(x_2\) und \(x_3\) jeweils stetig ist.

    b) Gegeben ist die Funktion

    \[g \colon x \mapsto \begin{cases} \begin{align*} &ax + a &&\text{für} \; x < 1 \\[0.8em] &-2 &&\text{für}\;1 \leq x < 5 \\[0.8em] &b \cdot (x^3 - 10x^2 + 25x)-2 &&\text{für}\;x \geq 5 \end{align*} \end{cases}\enspace\text{mit}\;a, b \in \mathbb R\]

    Bestimmen Sie den Wert von \(a\) so, dass \(g\) an der Stelle \(x = 1\) stetig ist und zeigen Sie, dass \(g\) an der Stelle \(x = 5\) unabhängig vom Wert von \(b\) stetig ist.

      

    Aufgabe 3

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{x(x-3)}{(x-2)^2}\) mit maximaler Definitionsmenge \(D_f\).

    a) Geben Sie \(D_f\) an und entscheiden Sie, welcher der Graphen I bis IV den Graphen der Funktion \(f\) darstellt. Begründen Sie Ihre Entscheidung.

    Klausur Q11/1-005 Aufgabe1 Graph I

    Klausur Q11/1-005 Aufgabe1 Graph II

     

    Klausur Q11/1-005 Aufgabe1 Graph III

    Klausur Q11/1-005 Aufgabe1 Graph IV

    b) Graph IV zeigt den Graphen einer gebrochenrationalen Funktion \(g\), der eine schräge Asymptote mit der Gleichung \(y = -x + 4\) besitzt. Die Koordinaten der Schnittpunkte des Graphen von \(g\) mit den Koordinatenachsen sowie die Polstelle von \(g\) sind ganzzahlig.

    Geben Sie an, welcher der folgenden Funktionsterme die Funktion \(g\) beschreibt.

    \[\text{A}\quad\frac{1}{x - 2} -x +4\]

    \[\text{B}\quad-\frac{1}{x-2} -x +4\]

    \[\text{C}\quad\frac{1}{2-x} +x - 4\]

    \[\text{D}\quad\frac{1}{2-x}-x-4\]

     

    Aufgabe 4

    Gegeben ist die gebrochenrationale Funktion \(f \colon x \mapsto \dfrac{-2x-4}{x^3+6x^2+9x}\) mit maximaler Definitionsmenge \(D_f\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

    a) Geben Sie die Nullstelle von \(f\) an. Untersuchen Sie \(f\) auf Polstellen und geben Sie \(D_f\) an. Bestimmen Sie das Verhalten von \(G_f\) an den Definitionslücken.

    b) Untersuchen Sie \(G_f\) auf schräge oder waagrechte Asymptoten.

    c) Berechnen Sie \(f(-4)\) und \(f(1)\) und zeichnen Sie \(G_f\) im Bereich \(-7 < x < 4\) in ein Koordinatensystem.

     

    Aufgabe 5

    a) Bestimmen Sie den Grenzwert \(\lim \limits_{x\,\to\,2} f(x)\) mit \(f(x) = \dfrac{4x^2-6x-4}{x-2}\).

    (Zwischenergebnis: \(x = 2\) ist Nullstelle von \(f\))

    b) Die Grenzwertbetrachtung lässt auf eine besondere Eigenschaft der gebrochrationalen Funktion \(f\) schließen. Geben sie diese an und beschreiben Sie kurz wie sich der Graph von \(f\) an der Stelle \(x = 2\) verhält.

     

    Aufgabe 6

    Beim Fernsehsender „Sport TV" treten bei Live-Übertragungen mit einer Wahrscheinlichkeit von 4 % Bildstörungen auf. Wenn das Bild gestört ist, kommt es mit einer Wahrscheinlichkeit von 60 % auch zu Tonstörungen. Bei 13,6 % der Übertragungen kommt es zu Bild- oder Tonstörungen.

    Betrachte werden folgende Ereignisse:

    \(B\): „Es tritt eine Bildstörung bei der Live-Übertragung auf",

    \(T\): „Es tritt eine Tonstörung bei der Live-Übertragung auf".

    a) Zeigen Sie, dass bei 12 % aller Live-Übertragungen Tonstörungen auftreten.

    b) Berechnen Sie die Wahrscheinlichkeit dafür, dass bei einer Live-Übertragung

    1. ein einwandfreies Bild empfangen wird, falls der Ton gestört ist.
    2. Bild oder Ton einwandfrei empfangen werden.

    c) Untersuchen Sie, ob die Ereignisse \(B\) und \(T\) stochastisch unabhängig sind.

  • Aufgabe 1

    Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

    Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

    a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

    b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

    c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

    d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

    e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

    Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

     

    Aufgabe 2

    Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

    Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

     

    Aufgabe 3

    Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

    Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

    Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

     

    Aufgabe 4

    Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

    a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

    (mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

    b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

    c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

    d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

     

    Aufgabe 5

    Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

    Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

  • Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

    Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

  • Ermitteln Sie diejenigen Werte von \(k\), für die die jeweils zugehörige Funktion \(p_{k}\) keine Nullstelle besitzt.

    (3 BE)

  • Das Medikament zeigt die gewünschte Wirkung erst ab einer bestimmten Wirkstoffkonzentration. Daher soll der Patient nach der ersten Tablette des Medikaments eine zweite identisch wirkende Tablette einnehmen, noch bevor die Konzentration des Wirkstoffs im Blut unter 0,75\(\frac{\sf{mg}}{\sf{l}}\) fällt. Nach der Einnahme der zweiten Tablette erhöht sich die Wirkstoffkonzentration um die durch diese Tablette verursachte Konzentration des Wirkstoffs im Blut.

    Ermitteln Sie durch Rechnung den spätesten Zeitpunkt, zu dem die zweite Tablette eingenommen werden soll.

    (4 BE)

  • Für die erste Ableitung von \(f_{a,b,c}\) gilt: \(f'_{a,b,c}(x) = -\dfrac{ax^{2} + 2bx - ac}{(x^{2} +c)^{2}}\).

    Zeigen Sie: Wenn \(a \neq 0\) und \(c > 0\) gilt, dann besitzt der Graph von \(f_{a,b,c}\) genau zwei Extrempunkte.

    (4 BE)

  • Eine auf einem Hausdach installierte Photovoltaikanlage wandelt Lichtenergie in elektrische Energie um. Für \(4 \leq x \leq 20\) beschreibt die Funktion \(p\) modellhaft die zeitliche Entwicklung der Leistung der Anlage an einem bestimmten Tag. Dabei ist \(x\) die seit Mitternacht vergangene Zeit in Stunden und \(p(x)\) die Leistung in kW (Kilowatt).

    Bestimmen Sie rechnerisch die Uhrzeit am Nachmittag auf Minuten genau, ab der die Leistung der Anlage weniger als 40 % ihres Tageshöchstwerts von 10 kW beträgt.

    (4 BE)

  • Bestimmen Sie rechnerisch die \(x\)-Koordinaten der beiden Extrempunkte von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = (x^{2} - 2x - 1) \cdot e^{-x}\))

    (4 BE)

  • Bestimmen Sie, wie groß \(n\) mindestens sein muss, damit die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, größer als 90 % ist.

     (3 BE)

  • Auf der Oberfläche der Marmorkugel treten an vier Stellen Wasserfontänen aus. Eine dieser Austrittsstellen wird im Modell durch den Punkt \(L_{0}(1|1|6)\) beschrieben. Die zugehörige Fontäne wird modellhaft durch Punkte \(L_{t}\left(t + 1|t + 1|6{,}2 - 5 \cdot (t - 0{,}2)^{2}\right)\) mit geeigneten Werten \(t \in \mathbb R_{0}^{+}\) beschrieben.

    Abbildung Teilaufgabe d Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2021

    Der Punkt \(P\) liegt innerhalb des Dreiecks \(ABS\) und beschreibt im Modell die Stelle, an der die Fontäne auf die Bronzeschale trifft (vgl. Abbildung). Bestimmen Sie die Koordinaten von \(P\).

    (4 BE)

  • Berechnen Sie die Höhen, in denen das Loch gebohrt werden kann, damit die Spritzweite 6 m beträgt. Geben Sie zudem die Höhe an, in der das Loch gebohrt werden muss, damit die Spritzweite maximal ist.

    (5 BE)

  • Bestimmen Sie rechnerisch den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt.

    (5 BE) 

  • Die erste Ableitungsfunktion von \(h_k\) wird mit \(h'_k\) bezeichnet. Beurteilen Sie die folgende Aussage:

    Es gibt genau einen Wert von \(k\), für den der Graph von \(h'_k\) Tangente an den Graphen von \(h_k\) ist.

    (6 BE) 

  • Auf der Kante \([AD]\) liegt der Punkt \(Q\), auf der Kante \([BE]\) der Punkt \(R(0|6|2)\). Das Dreieck \(FQR\) hat in \(Q\) einen rechten Winkel. Bestimmen Sie die \(x_3\)-Koordinate von \(Q\).

    (5 BE)