Strecken von Funktionsgraphen

  • Die Funktion \(k\) besitzt die Periode \(\pi\).

    (1 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(g_{a,c} \, \colon x \mapsto \sin (ax) + c\) mit \(a,c \in \mathbb R^+_0\).

    Geben Sie für jede der beiden folgenden Eigenschaften einen möglichen Wert für \(a\) und einen möglichen Wert für \(c\) so an, dass die zugehörige Funktion \(g_{a,c}\) diese Eigenschaft besitzt.

    α) Die Funktion\(g_{a,c}\) hat die Wertemenge \([0;2]\).

    β) Die Funktion \(g_{a,c}\) hat im Intervall \([0;\pi]\) genau drei Nullstellen.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h : x \mapsto 6 \cdot e^{-0{,}5x} + 1{,}5\). Die Abbildung zeigt den in \(\mathbb R\) streng monoton fallenden Graphen \(G_h\) von \(h\) sowie dessen Asymptote, die durch die Gleichung \(y = 1{,}5\) gegeben ist.

    Beschreiben Sie, wie \(G_h\) aus dem Graphen der in \(\mathbb R\) definierten natürlichen Exponentialfunktion \(x \mapsto e^x\) hervorgeht.

    Abbildung Teilaufgabe 2a: Exponetialfunktion h, streng monoton fallend, Asymptote =1,5

    (4 BE)

  • Haben zu Beobachtungsbeginn Sonnenblumen der Sorte Tramonto die gleiche Höhe wie Sonnenblumen der Sorte Alba, so erreichen von da an die Sonnenblumen der Sorte Tramonto im Vergleich zu denen der Sorte Alba jede Höhe in der Hälfte der Zeit.

    Das Wachstum von Sonnenblumen der Sorte Tramonto lässt sich modellhaft mithilfe einer in \(\mathbb R\) definierten Funktion \(g\) beschreiben, die eine Funktionsgleichung der Form I, II, oder III mit \(k \in \mathbb R^+\) besitzt:

    \[\textsf{I}\enspace y = \frac{2e^{x+k}}{e^{x+k}+9}\]

    \[\textsf{II}\enspace y = k \cdot \frac{2e^x}{e^x + 9}\]

    \[\textsf{III}\enspace y = \frac{2e^{kx}}{e^{kx} + 9}\]

    Dabei ist \(x\) die seit Beobachtungsbeginn vergangene Zeit in Monaten und \(y\) ein Näherungswert für die Höhe einer Blume in Metern.

    Begründen Sie, dass weder eine Gleichung der Form I noch eine der Form II als Funktionsgleichung von \(g\) infrage kommt.

    (4 BE)

  • Die Funktionsgleichung von \(g\) hat also die Form III. Geben Sie den passenden Wert von \(k\) an.

    (1 BE)

Seite 2 von 2