Symmetrie von Funktionsgraphen

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \frac{1}{100} \cdot \left( 2x^3 - 43x^2 + 248x \right)\). Abbildung 1 zeigt den Graphen \(G_f\) von \(f\) im Bereich \(0 \leq x \leq 10\).

    Abbildung 1 Aufgabe B1 Prüfungsteil B Mathematik Beispiel-Abiturprüfung Bayern 2026Abb. 1

    Begründen Sie anhand des Terms von \(f\), dass \(G_f\) nicht symmetrisch bezüglich des Koordinatenursprungs ist, und zeigen Sie rechnerisch, dass \(G_f\) für \(x < 7\frac{1}{6}\) rechtsgekrümmt ist.

    (4 BE) 

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\) und \(g\). Der Graph von \(f\) ist symmetrisch bezüglich der \(y\)-Achse, der Graph von \(g\) ist symmetrisch bezüglich des Koordinatenursprungs. Beide Graphen haben einen Hochpunkt im Punkt \((2|1)\).

    1. Geben Sie für die Graphen von \(f\) und \(g\) jeweils die Koordinaten und die Art eines weiteren Extrempunkts an.
      (2 BE)
    2. Untersuchen Sie die in \(\mathbb R\) definierte Funktion \(h\) mit \(h(x) = f(x) \cdot \left( g(x) \right)^3\) im Hinblick auf eine mögliche Symmetrie ihres Graphen.
      (3 BE)
  • Begründen oder widerlegen Sie folgende Aussage:

    Wenn der Graph \(G_f\) einer gebrochenrationalen Funktion \(f\) punktsymmetrisch zum Koordinatenursprung ist, so hat \(f\) mindestens zwei Definitionslücken.

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\) und \(g\). Der Graph der Funktion \(f\) ist achsensymmetrisch zur \(y\)-Achse und der Graph der Funktion \(g\) ist punktsymmetrisch zum Koordinatenursprung.

    Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion \(h \colon x \mapsto f(x) \cdot \left[ g(x) \right]^4\) bezüglich des Koordinatensystems.

  • Aufgabe 1

    Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\) und \(g\). Der Graph der Funktion \(f\) ist achsensymmetrisch zur \(y\)-Achse und der Graph der Funktion \(g\) ist punktsymmetrisch zum Koordinatenursprung.

    Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion \(h \colon x \mapsto f(x) \cdot \left[ g(x) \right]^4\) bezüglich des Koordinatensystems.

     

    Aufgabe 2

    Geben Sie jeweils den Funktionsterm einer Funktion an, die folgende Eigenschaften besitzt:

    1. Die Funktion \(f\) besitzt die Wertemenge \([-2;2]\) und \(x = -\frac{\pi}{2}\) sowie \(x = \frac{\pi}{2}\) sind zwei Nullstellen von \(f\).
    2. Die Funktion \(g\) divergiert für \(x \to -\infty\) gegen \(+\infty\) und konvergiert für \(x \to +\infty\) gegen \(+3\).
    3. Der Graph der Funktion \(h\) ist punktsymmetrisch zum Koordinatenursprung. Er besitzt die Nullstelle \(x = 2\) und es gilt: \(\lim \limits_{x\, \to\, -\infty}h(x) = +\infty\).

     

    Aufgabe 3

    Abbildung zu Klausur 11/1-G902

    1. Beschreiben Sie mithilfe der Abbildung, wie der Graph von \(g\) aus dem Graphen von \(f\) hervorgeht. Geben Sie einen Funktionsterm von \(g\) an, indem Sie \(g\) durch \(f\) ausdrücken.
    2. Beschreiben Sie, wie der Graph der in \(\mathbb R\) definierten Funktion \(p\colon x \mapsto 4x^2 +8x +4\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(q\colon x \mapsto x^2\) hervorgeht.

     

    Aufgabe 4

    Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto 2^x + 3x + 4\) und \(g \colon x \mapsto 2^{x+1} + 6x -2\).

    Zeigen Sie, dass der Graph der Funktion \(g\) aus dem Graphen der Funktion \(f\) durch

    1. eine Streckung in \(y\)-Richtung mit dem Faktor \(2\) und
    2. eine Verschiebung in \(y\)-Richtung um \(-10\)

    hervorgeht. Begründen Sie, dass die Reihenfolge der Schritte von Bedeutung ist.

     

    Aufgabe 5

    Gegeben ist die Funktion \(h\) mit

    \[h \colon x \mapsto \begin{cases} \begin{align*} -2^{-x+1}+3 \enspace \text{für} \enspace x &\leq 2 \\[0.8em] \sin{(x-1)+0{,}5} \enspace \text{für} \enspace x &>2\end{align*} \end{cases}\]

    auf ihrem maximalen Definitionsbereich \(D_h = \mathbb R\).

    Untersuchen Sie die Funktion \(h\) auf Stetigkeit.

     

    Aufgabe 6

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{2x^2 - 8}{x^2 + x}\) mit maximaler Definitionsmenge \(D_f\).

    1. Bestimmen Sie \(D_f\) sowie die Nullstelle(n) von \(f\) und geben Sie die Gleichung(en) der senkrechten Asymptote(n) des Graphen von \(f\) an.
    2. Begründen Sie, dass \(y = 2\) die Gleichung der waagerechten Asymptote des Graphen von \(f\) ist.

     

    Aufgabe 7

    Geben Sie den Term einer gebrochenrationalen Funktion \(f\) an,

    1. deren Graph die senkrechten Asymptoten mit den Gleichungen \(x = -2\) und \(x = 3\), die doppelte Nullstelle \(x = 1\) sowie die waagrechte Asymptote mit der Gleichung \(y = 0\) besitzt.
    2. die in \(\mathbb R\) definiert ist und deren Graph die waagrechte Asymptote mit der Gleichung \(y = 1\) besitzt sowie die \(y\)-Achse bei \(3\) schneidet.

     

    Aufgabe 8

    Begründen oder widerlegen Sie folgende Aussage:

    Wenn der Graph \(G_f\) einer gebrochenrationalen Funktion \(f\) punktsymmetrisch zum Koordinatenursprung ist, so hat \(f\) mindestens zwei Definitionslücken.

  • An der Decke eines Hausflurs ist eine Deckenleuchte angebracht. Die Randlinie des Lichtkegels der Deckenleuchte kann näherungsweise durch die Funktion \(\displaystyle f \colon x \mapsto -3 \cdot \left( e^{0{,}4x} + e^{-0{,}5x} \right) + 9\) beschrieben werden mit \(x\) und \(y\) in Metern (vgl. Abbildung). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    Abbildung zu Aufgabe 5 Klausur Q11 2 002

     

    a) Zeigen Sie, dass \(G_{f}\) nicht symmetrisch bezüglich des Koordinatensystems ist.

    b) Ersetzen Sie einen Zahl \((\neq 0)\) des Funktionsterms \(f(x)\) so, dass \(G_{f}\) symmetrisch ist und geben Sie die Art der Symmetrie an.

    Eine Feinjustierung der LEDs der Deckenleuchte verändert den Lichtkegel. Die Randlinie des veränderten Lichtkegels wird nun näherungsweise durch die Funktion \(g \colon x \mapsto -3 \cdot \left( e^{0{,}5x} + e^{-0{,}5x} \right) + 9\) beschrieben. Der Graph der Funktion \(g\) wird mit \(G_{g}\) bezeichnet.

    c) Bestimmen Sie die Schnittpunkte von \(G_{g}\) mit den Koordinatenachsen. Hinweis: Verwenden Sie die Substitution \(u = e^{0{,}5x}\) zur Bestimmung der Schnittpunkte mit der \(x\)-Achse.

    d) Berechnen Sie den Winkel, unter dem \(G_{g}\) die negative \(x\)-Achse schneidet.

    e) Die Position der Aufhängung der Deckenleuchte entspricht der Lage des Hochpunkts von \(G_{g}\). Die Aufhängung ist 85 cm von der Decke entfernt. Berechnen Sie die Raumhöhe \(h\) des Hausflurs, an dessen Decke die Deckenleuchte angebracht ist.

  • Gegeben ist die Funktionenschar \(f_{k} \colon x \mapsto x \cdot \sqrt{k - 2x}\) mit \(k \in \mathbb R^{+}\).

     

    a) Geben Sie die maximale Definitionsmenge von \(f_{k}\) in Abhängigkeit des Parameters \(k\) an.

    b) Untersuchen Sie das Symmetrieverhalten der Kurvenschar von \(f_{k}\) bezüglich des Koordinatensystems.

    c) Untersuchen Sie das Verhalten von \(f_{k}\) an den Rändern des Definitionsbereichs.

    d) Weisen Sie nach, dass für die Ableitung von \(f_{k}\) gilt: \(f'_{k}(x) = \dfrac{k - 3x}{\sqrt{k - 2x}}\).

    Im Folgenden sei \(k = 4\). Der Graph der Funktion \(f_{4}\) wird mit \(G_{f_{4}}\) bezeichnet.

    e) Mithilfe des Ansatzes \(x = f_{4}(x)\) lässt sich der Schnittpunkt des Graphen \(G_{f_{4}}\) mit dem Graphen der Umkehrfunktion von \(f_{4}\) ermitteln. Beschreiben Sie die Idee dieses Ansatzes. Eine Berechnung ist nicht erforderlich!

    f) Untersuchen Sie das Monotonieverhalten von \(f_{4}\) unter Berücksichtigung des maximalen Definitionsbereichs und bestimmen Sie die Lage und Art des Extrempunkts von \(G_{f_{4}}\)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

    c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

  • Aufgabe 1

    Bestimmen Sie jeweils die erste Ableitung der folgenden Funktionen, ohne anschließend zu vereinfachen.

     

    a) \(f(x) = 2\sqrt{x} \cdot \cos(0{,}5x)\)

    b) \(g(x) = \dfrac{\ln\left(\dfrac{1}{x^{3}}\right)}{2x + 3}\)

     

    Aufgabe 2

    Abbildung zu Aufgabe 2 Klausur Q11/2-002

    Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 4 - 2e^{x - 4}\).

     

    a) Geben Sie die Definitionsmenge der Funktion \(f\) an. Bestimmen Sie das Verhalten an den Rändern des Definitionsbereichs. Geben Sie die Wertemenge der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist.

    c) Berechnen Sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an. Skizzieren Sie den Graphen der Umkehrfunktion \(f^{-1}\) in das obige Koordinatensystem.

     

    Aufgabe 3

    Gegeben ist die Funktion \(f\colon x \mapsto 2(e^{x} - 1)^{2}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Geben Sie die Definitionsmenge der Funktion \(f\) an.

    b) Ermitteln Sie das Verhalten von \(f\) für \(x \to -\infty\) und \(x \to +\infty\). Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    c) Weisen Sie nach, dass der Koordinatenursprung absoluter Tiefpunkt von \(G_{f}\) ist. Geben Sie die Wertemenge der Funktion \(f\) an.

     

    Aufgabe 4

    Einer der folgenden Graphen gehört zu der in \(\mathbb R\) definierten Funktion \(f \colon x \mapsto \dfrac{x + 3}{e^{x}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    Geben Sie an, welcher der Graphen I, II oder III den Graphen \(G_{f}\) zeigt und begründen Sie jeweils, warum die beiden anderen Graphen nicht in Frage kommen. 

    Abbildung zu Aufgabe 4 Klausur Q11 2 002

     

    Aufgabe 5

    An der Decke eines Hausflurs ist eine Deckenleuchte angebracht. Die Randlinie des Lichtkegels der Deckenleuchte kann näherungsweise durch die Funktion \(\displaystyle f \colon x \mapsto -3 \cdot \left( e^{0{,}4x} + e^{-0{,}5x} \right) + 9\) beschrieben werden mit \(x\) und \(y\) in Metern (vgl. Abbildung). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    Abbildung zu Aufgabe 5 Klausur Q11 2 002

     

    a) Zeigen Sie, dass \(G_{f}\) nicht symmetrisch bezüglich des Koordinatensystems ist.

    b) Ersetzen Sie einen Zahl \((\neq 0)\) des Funktionsterms \(f(x)\) so, dass \(G_{f}\) symmetrisch ist und geben Sie die Art der Symmetrie an.

    Eine Feinjustierung der LEDs der Deckenleuchte verändert den Lichtkegel. Die Randlinie des Lichtkegels wird nun näherungsweise durch die Funktion \(g \colon x \mapsto -3 \cdot \left( e^{0{,}5x} + e^{-0{,}5x} \right) + 9\) beschrieben. Der Graph der Funktion \(g\) wird mit \(G_{g}\) bezeichnet.

    c) Bestimmen Sie die Schnittpunkte von \(G_{g}\) mit den Koordinatenachsen. Hinweis: Verwenden Sie die Substitution \(u = e^{0{,}5x}\) zur Bestimmung der Schnittpunkte mit der \(x\)-Achse.

    d) Berechnen Sie den Winkel, unter dem \(G_{g}\) die negative \(x\)-Achse schneidet.

    e) Die Position der Aufhängung der Deckenleuchte entspricht der Lage des Hochpunkts von \(G_{g}\). Die Aufhängung ist 85 cm von der Decke entfernt. Berechnen Sie die Raumhöhe \(h\) des Hausflurs, an dessen Decke die Deckenleuchte angebracht ist.

     

    Aufgabe 6

    Der Punkt \(A(4|-1|0)\) ist Mittelpunkt der Kugel \(K\), auf deren Oberfläche der Punkt \(B(-1|1|4)\) liegt. 

    Ermitteln Sie die Koordinaten eines weiteren Punktes \(C\), der ebenfalls auf der Kugeloberfläche liegt.

  • Aufgabe 1

    Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an. Bestimmen Sie jeweils die erste Ableitung der Funktion und vereinfachen Sie den Term der Ableitungsfunktion soweit wie möglich.

     

    a) \(f(x) = -2\cos{(3- x)}\)

    b) \(g(x) = \ln{\left( 2 - x^{2} \right)}\)

    c) \(h(x) = \dfrac{-2 + e^{x}}{e^{x} - 1}\)

     

    Aufgabe 2

    Geben Sie zu jeder der folgenden Funktionen eine Stammfunktion an.

     

    a) \(f(x) = \dfrac{2}{x^{2}}; \; D_{f} = \mathbb R \backslash \{0\}\)

    b) \(g(x) = -\dfrac{1}{3}\sin(3x - 2); \; D_{g} = \mathbb R\)

     

    Aufgabe 3

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \sqrt{x^{2} + 9} - 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet

     

    a) Bestimmen Sie die Definitions- und Wertemenge der Funktion \(f\).

    b) Untersuchen Sie die Umkehrbarkeit der Funktion \(f\).

    c) Ermitteln sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) mit \(D_{f} = \mathbb R^{+}\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an.

    d) Geben Sie an, welche Eigenschaft alle Schnittpunkte des Graphen der Funktion \(f\) und des Graphen der Umkehrfunktion \(f^{-1}\) haben und begründen Sie Ihre Aussage.

     

    Aufgabe 4

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

    c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

     

    Aufgabe 5

    Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

     

    a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

    b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

    c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

    d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

    e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

    f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{4x + 4}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Geben Sie die maximale Definitionsmenge sowie die Nullstelle(n) und die Polstelle(n) der Funktion \(f\) an. Bestimmen Sie die Gleichungen aller Asymptoten des Graphen der Funktion \(f\).

    b) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    c) Leiten Sie die Funktion \(f\) sowohl mit der Produkt- als auch der Quotientenregel ab.

    (Zur Kontrolle: \(f'(x) = \dfrac{-4x - 8}{x^{3}}\))

    d) Bestimmen Sie die Nullstelle(n) der Ableitungsfunktion und deuten Sie das Ergebnis geometrisch.

    e) Ermitteln Sie die Gleichung der Tangente \(T\) an \(G_{f}\) an der Stelle \(x = 2\).

  • Aufgabe 1

    Geben Sie eine gebrochenrationale Funktion \(f\) an, deren Graph die Asymptote mit der Gleichung \(y = 2x - 1\) sowie die Nullstelle \(x = 2\) besitzt.

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{4x + 4}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Geben Sie die maximale Definitionsmenge sowie die Nullstelle(n) und die Polstelle(n) der Funktion \(f\) an. Bestimmen Sie die Gleichungen aller Asymptoten des Graphen der Funktion \(f\).

    b) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    c) Leiten Sie die Funktion \(f\) sowohl mit der Produkt- als auch der Quotientenregel ab.

    (Zur Kontrolle: \(f'(x) = \dfrac{-4x - 8}{x^{3}}\))

    d) Bestimmen Sie die Nullstelle(n) der Ableitungsfunktion und deuten Sie das Ergebnis geometrisch.

    e) Ermitteln Sie die Gleichung der Tangente \(T\) an \(G_{f}\) an der Stelle \(x = 2\).

     

    Aufgabe 3

    a) Berechnen Sie die Ableitung folgender Funktionen mithilfe der Ableitungsregeln ohne anschließend zu vereinfachen.

     

    α) \(f(x) = 3x^{4} - \dfrac{3}{x} + 6\)

    β) \(g(x) = (2x - 3)(x^{2} - t)\)

    γ) \(h(x) = \dfrac{3x - 5}{3 - x^{3}}\)

     

    b) Bestimmen Sie eine Stammfunktion der Funktion \(f \colon x \mapsto 3x^{4} + \dfrac{3}{x^{3}} - 4\).

     

    Aufgabe 4

    Gegeben ist die Funktion \(f \colon x \mapsto 4x^{2} - 1\).

     

    a) Bestimmen Sie die mittlere Änderungsrate auf dem Intervall \([1;3]\).

    b) Bestimmen Sie \(f'(2)\) unter Verwendung des Differentialquotienten.

     

    Aufgabe 5

    Florian behauptet: „Sind die Ableitungen von zwei Funktionen gleich, so sind auch die Funktionen selbst gleich."

    Nehmen Sie zu Florians Aussage begründend Stellung.

     

    Aufgabe 6

    Ordnen Sie die Graphen I bis VI den freien Feldern der Tabelle so zu, dass unter einem Funktionsgraphen jeweils der Graph seiner Ableitung zu sehen ist und beschriften Sie die Felder entsprechend. Begründen Sie Ihre Wahl für die erste Spalte.

    Hinweis: Die Skalierung der Koordinatenachsen ist für alle abgebildeten Graphen dieselbe.

     

    Funktionsgraph links oben der Tabelle zu Aufgabe 6    
      Funktionsgraph mittig der Tabelle zu Aufgabe 6   
        Funktionsgraph rechts unten der Tabelle zu Aufgabe 6 

     

    Graphen I bis VI:

    Graph I Graph II Graph III
    Graph IV Graph V Graph VI
  • Gegeben ist die Funktion \(f \colon x \mapsto 3x + 2 + \dfrac{1}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bzgl. des Koordinatensystems.

    b) Geben Sie die Art und die Gleichungen aller Asymptoten der Funktion \(f\) an.

    c) Geben Sie eine Stammfunktion der Funktion \(f\) an.

  • Aufgabe 1

    Bestimmen Sie die Ableitungsfunktion \(f'\) der Funktion \(f \colon x \mapsto (3x - 2)(x + 1) - \dfrac{1}{x}\) und vereinfachen Sie den Term.

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{3x^{2} + 3x - 6}{{(x + 1)}^{2}}\) mit dem maximalen Definitionsbereich \(D_{f}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie \(D_{f}\) an.

    b) Ermitteln Sie die Koordinaten aller Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen.

    c) Untersuchen Sie das Verhalten der Funktion \(f\) an den Rändern des Definitionsbereichs.

    d) Stellen Sie die Gleichung der Tangente \(T\) an \(G_{f}\) sowie die Gleichung der Normalen \(N\) an der Stelle \(x = 1\) auf.

    e) Zeichnen Sie \(G_{f}\), die Tangente \(T\) und die Normale \(N\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

    f) Bestimmen Sie den Flächeninhalt des Dreiecks, welches die Tangente \(T\) und die Normale \(N\) mit der \(y\)-Achse bilden.

     

    Aufgabe 3

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto -\dfrac{1}{8}x^{3} + \dfrac{3}{2}x^{2} - \dfrac{9}{2}x\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    Untersuchen Sie das Monotonieverhalten der Funktion \(f\) und geben Sie die Lage und die Art der lokalen Extrempunkte von \(G_{f}\) an.

     

    Aufgabe 4

    Graph der Funktion f

    Die Abbildung zeigt den Graphen \(G_{f}\) einer Funktion \(f\).

    Ordnen Sie dem Graphen der Funktion \(f\) aus den Graphen I bis VI den Graphen der zugehörigen Ableitungsfunktion \(f'\) und einer zugehörigen Stammfunktion \(F\) zu. Begründen Sie Ihre Wahl.

    Graph I

    Graph II

    Graph III

    Graph IV

    Graph V

    Graph VI

     

    Aufgabe 5

    Gegeben ist die Funktion \(f \colon x \mapsto 3x + 2 + \dfrac{1}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bzgl. des Koordinatensystems.

    b) Geben Sie die Art und die Gleichungen aller Asymptoten der Funktion \(f\) an.

    c) Geben Sie eine Stammfunktion der Funktion \(f\) an.

     

    Aufgabe 6

    Graph einer Funktion f

    Die Abbildung zeigt den Graphen \(G_{f}\) einer Funktion \(f\). Die Ableitungsfunktion von \(f\) wird mit \(f'(x)\) bezeichnet, eine Stammfunktion von \(f\) wird mit \(F(x)\) bezeichnet. 

    Entscheiden Sie jeweils, ob die nachfolgenden Aussagen richtig oder falsch sind und begründen Sie Ihre Entscheidung.

    a) \(f'(x)\) hat genau zwei Nullstellen.

    b) \(f'(x) < 0\) für \(5{,}5 < x < 6{,}5\)

    c) \(f'(6) > f'(7)\)

    d) \(f'(4) \approx f'(6)\)

    e) Der Graph von \(F(x)\) hat an der Stelle \(x = 6\) in etwa die Steigung \(-1\).

    f) Der Graph von \(F(x)\) hat an der Stelle \(x = 7\) einen Terrassenpunkt.

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{1}{32}x^{4} - \dfrac{1}{4}x^{2} + 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie das Symmetrieverhalten von \(f\).

    b) Untersuchen Sie das Verhalten von \(G_{f}\) für \(x \to -\infty\) und \(x \to +\infty\).

    c) Bestimmen Sie die Gleichung der Tangente \(T\) im Punkt \(P(1|f(1))\).

    d) Berechnen Sie den Schnittpunkt \(S_{y}\) des Graphen der Funktion \(f\) mit der \(y\)-Achse.

    e) Bestimmen Sie rechnerisch Lage und Art aller Extrempunkte von \(G_{f}\).

    f) Zeichnen Sie \(G_{f}\) sowie die Tangente \(T\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

  • Gegeben ist die gebrochenrationale Funktion \(f \colon x \mapsto \dfrac{6 - x^{2}}{x^{2} - 9}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Bestimmen Sie die maximale Definitionsmenge \(D_{f}\) der Funktion \(f\).

    b) Berechnen Sie die Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen.

    c) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\).

    d) Untersuchen Sie das Verhalten von \(f\) an den Rändern von \(D_{f}\).

    e) Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    f) Skizzieren Sie \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

  • Aufgabe 1

    Gegeben ist die gebrochenrationale Funktion \(f \colon x \mapsto \dfrac{6 - x^{2}}{x^{2} - 9}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Bestimmen Sie die maximale Definitionsmenge \(D_{f}\) der Funktion \(f\).

    b) Berechnen Sie die Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen.

    c) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\).

    d) Untersuchen Sie das Verhalten von \(f\) an den Rändern von \(D_{f}\).

    e) Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    f) Skizzieren Sie \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

     

    Aufgabe 2

    Bilden Sie die erste Ableitung folgender Funktionen und vereinfachen Sie den Funktionsterm der Ableitung soweit wie möglich:

    a) \(f(x) = \dfrac{1}{x - 3}\)

    b) \(g(x) = -(x^{2} - 6x + 3) (x - 2)\)

     

    Aufgabe 3

    Abbildung zu Aufgabe 3 Klausur Q11/1-001

    Die Abbildung zeigt den Graphen der Ableitungsfunktion \(f'\) einer auf \(\mathbb R\) differenzierbaren Funktion \(f\).

    a) Geben Sie das Monotonieverhalten und die Extremstelle(n) von \(f\) an.

    b) Ermitteln Sie den Funktionsterm der Funktion \(f\), deren Graph \(G_{f}\) durch den Punkt \(P(1|-1)\) verläuft und skizzieren Sie \(G_{f}\).

     

    Aufgabe 4

    Geben Sie eine Stammfunktion der Funktion \(f \colon x \mapsto 3x^{2} + \dfrac{1}{x^{2}}\) an und erläutern Sie kurz, was man unter dem Begriff „Stammfunktion" versteht.

     

    Aufgabe 5

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{1}{32}x^{4} - \dfrac{1}{4}x^{2} + 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie das Symmetrieverhalten von \(f\).

    b) Untersuchen Sie das Verhalten von \(G_{f}\) für \(x \to -\infty\) und \(x \to +\infty\).

    c) Bestimmen Sie die Gleichung der Tangente \(T\) im Punkt \(P(1|f(1))\). 

    d) Berechnen Sie den Schnittpunkt \(S_{y}\) des Graphen der Funktion \(f\) mit der \(y\)-Achse.

    e) Bestimmen Sie rechnerisch Lage und Art aller Extrempunkte von \(G_{f}\).

    f) Zeichnen Sie \(G_{f}\) sowie die Tangente \(T\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

  • Geben sie jeweils eine Integrandenfunktion \(f(x)\) und \(g(x)\) an, sodass die folgenden Gleichungen erfüllt sind.

    a) \(\displaystyle \int_{-a}^{+a} f(x) dx = 0; \; a \neq 0\)

    b) \(\displaystyle \int_{-1}^{3} g(x) dx = 8\)

  • Aufgabe 1

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{8x}{x^{2} + 4}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie den maximalen Definitionsbereich der Funktion \(f\) und ermitteln Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs. Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    c) Weisen Sie nach, dass der Graph \(G_{f}\) durch den Koordinatenursprung \(O(0|0)\) verläuft und berechnen Sie die Größe des Winkels, unter dem \(G_{f}\) die \(x\)-Achse schneidet.

    (Teilergebnis: \(f'(x) = -\dfrac{8(x^{2} - 4)}{(x^{2} + 4)^{2}}\))

    d) Bestimmen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

    e) Zeichnen Sie den Graphen \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

     

    Aufgabe 2

    Der Graph \(G_{f}\) einer gebrochenrationalen Funktion \(f\) hat folgende Eigenschaften:

    \(G_{f}\) hat genau die zwei Nullstellen \(x = 0\) und \(x = 4\).

    \(G_{f}\) hat genau die zwei Polstellen mit Vorzeichenwechsel \(x = -1\) und \(x = 2\).

    \(G_{f}\) hat eine waagrechte Asymptote mit der Gleichung \(y = 2\).

     

    a) Geben Sie einen möglichen Funktionsterm der Funktion \(f\) an und skizzieren Sie den Graphen der Funktion \(f\).

    b) „Der Funktionsterm \(f(x)\) ist durch die genannten Eigenschaften eindeutig bestimmt." Nehmen Sie zu dieser Aussage begründend Stellung.

     

    Aufgabe 3

    Gegeben ist die in \(\mathbb R\) definierte  Funktionenschar \(f_{a}(x) = x^{3} - ax + 3\) mit \(a \in \mathbb R\). Die Kurvenschar der Funktionenschar \(f_{a}\) wird mit \(G_{f_{a}}\) bezeichnet.

     

    Bestimmen Sie den Wert des Parameters \(a\) so, dass der zugehörige Graph der Kurvenschar \(G_{f_{a}}\)

    a) zwei Extrempunkte

    b) einen Terrassenpunkt

    besitzt.

     

    Aufgabe 4

    Abbildung zu Aufgabe 4 Klausur Q11/1-004

    Nach der Einnahme eines Medikaments wird die Konzentration \(K\) des Medikaments im Blut eines Patienten gemessen.

    Die Funktion \(K \colon t \mapsto \dfrac{100t}{t^{2} + 25}\) mit \(t \geq 0\) beschreibt näherungsweise den Verlauf \(K(t)\) der Konzentration des Medikaments in Milligramm pro Liter in Abhängigkeit von der Zeit \(t\) in Stunden (vgl. Abbildung).

     

    a) Bestimmen Sie den Zeitpunkt nach der Einnahme des Medikaments, zu dem die Konzentration \(K\) des Medikaments im Blut des Patienten noch 10 % der maximalen Konzentration beträgt auf Minuten genau.

    (Teilergebnis: \(K'(t) = -\dfrac{100(t^{2} - 25)}{(t^{2} + 25)^{2}}\))

    b) Berechnen Sie die mittlere Änderungsrate der Konzentration \(K\) im Zeitintervall \([10;20]\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

     

    Aufgabe 5

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto f(x)\) mit

     

    \[f(x) = \vert 2x - 4 \vert = \begin{cases} \begin{align*} 2x - 4 \; \text{falls} \; &x \geq 0 \\[0.8em] -(2x - 4) \; \text{falls} \; &x < 0 \end{align*} \end{cases}\]

     

    Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Skizzieren Sie \(G_{f}\) in ein geeignetes Koordinatensystem und begründen Sie geometrisch, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

    b) Bestätigen Sie durch Rechnung, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{8x}{x^{2} + 4}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie den maximalen Definitionsbereich der Funktion \(f\) und ermitteln Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs. Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    c) Weisen Sie nach, dass der Graph \(G_{f}\) durch den Koordinatenursprung \(O(0|0)\) verläuft und berechnen Sie die Größe des Winkels, unter dem \(G_{f}\) die \(x\)-Achse schneidet.

    (Teilergebnis: \(f'(x) = -\dfrac{8(x^{2} - 4)}{(x^{2} + 4)^{2}}\))

    d) Bestimmen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

    e) Zeichnen Sie den Graphen \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

Seite 1 von 3