Wendepunkt

  • Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(\mathbb R\) definierten Funktion \(f\) mit dem Wendepunkt \(W(1|4)\).

    Ermitteln Sie mithilfe der Abbildung näherungsweise den Wert der Ableitung von \(f\) an der Stelle \(x = 1\).

    Skizzieren Sie den Graphen der Ableitungsfunktion \(f'\) von \(f\) in die Abbildung; berücksichtigen Sie dabei insbesondere die Lage der Nullstellen von \(f'\) sowie den für \(f'(1)\) ermittelten Näherungswert.

    Abbildung Aufgabe 3 Analysis 1 Mathematik Abitur Bayern 2018 A

    (3 BE)

  • Skizzieren Sie in die Abbildung den Graphen von \(F\). Berücksichtigen Sie dabei insbesondere, dass \(F(1) \approx 3{,}5\) und \(\lim \limits_{x\,\to\,+\infty} F(x) = 2\) gilt.

    (3 BE)

  • Geben Sie \(g'(0)\) an un zeichnen Sie \(G_{g}\) im Bereich \(-4 \leq x \leq 4\) unter Berücksichtigung der bisherigen Ergebnisse und der Tatsache, dass \(G_{g}\) in \(W(0|g(0))\) seinen einzigen Wendepunkt hat, in ein Koordinatensystem ein.

    (3 BE)

  • Skizzieren Sie in Abbildung 1 einen möglichen Graphen von \(f\).

    (3 BE) 

  • Der Graph einer Stammfunktion von \(g\) verläuft durch \(P\). Skizzieren Sie diesen Graphen in Abbildung 2.

    (3 BE) 

  • Der Graph einer Stammfunktion von \(g\) verläuft durch \(P\). Skizzieren Sie diesen Graphen in Abbildung 2.

    (3 BE) 

  • Der Graph von \(F\) verläuft durch den Punkt \((\ln 2|0{,}5)\). Begründen Sie ohne weitere Rechnung, dass \(F\) keine größeren Werte als \(0{,}5\) annehmen kann und bei \(x = \ln 4\) eine Wendestelle besitzt. Berechnen Sie die \(y\)-Koordinate des zugehörigen Wendepunkts.

    (5 BE)

  • Betrachtet wird nun die Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x} f(t)\,dt\) mit Definitionsbereich \(D_{F} = [-5;5]\).

    Zeigen Sie mithilfe einer geometrischen Überlegung, dass \(F(5) = \frac{25}{4}\pi\) gilt.

    Einer der Graphen A, B und C ist der Graph von \(F\). Entscheiden Sie, welcher dies ist, und begründen Sie Ihre Entscheidung, indem Sie erklären, warum die beiden anderen Graphen nicht infrage kommen.

    Abbildung links zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Abbildung Mitte zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Abbildung rechts zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    (5 BE)

  • Abbildung 2 zeigt den Graphen \(G_{k}\) einer in \(\mathbb R\) definierten Funktion \(k\). Skizzieren Sie in Abbildung 2 den Graphen der zugehörigen Ableitungsfunktion \(k'\). Berücksichtigen Sie dabei insbesondere einen Näherungswert für die Steigung des Graphen \(G_{k}\) an dessen Wendepunkt \((0|-3)\) sowie die Nullstelle von \(k'\).

    Abbildung 2 zu Teilaufgabe 4 - Analysis 2 - Prüfungsteil A - Mathematik Abitur Bayern 2016

    Abb. 2

    (4 BE)

  • Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Der Punkt \((2|0)\) ist ein Wendepunkt des Graphen von \(g\).

    (2 BE)

  • Begründen Sie, dass \(2{,}5\) die \(x\)-Koordinate des Wendepunkts von \(G_{f}\) ist.

    (2 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = x^3 - 6x^2 + 11x - 6\) und \(x \in \mathbb R\).

    Weisen Sie nach, dass der Wendepunkt des Graphen von \(f\) auf der Geraden mit der Gleichung \(y = x - 2\) liegt.

    (3 BE)

  • Zu Beginn eines Ausatemvorgangs befinden sich 3,5 Liter Luft in der Lunge der Testperson. Skizzieren Sie auf der Grundlage des Modells unter Berücksichtigung des Ergebnisses aus Aufgabe 3c in einem Koordinatensystem für \(0 \leq t \leq 8\) den Graphen einer Funktion, die den zeitlichen Verlauf des Luftvolumens in der Lunge der Testperson beschreibt.

    (3 BE)

  • Der Graph \(G_{f}\) einer in \(\mathbb R\) definierten Funktion \(f \colon x \mapsto ax^4 + bx^3\) mit \(a,b \in \mathbb R\) besitzt im Punkt \(O\,(0|0)\) einen Wendepunkt mit waagrechter Tangente.

    \(W\,(1|-1)\) ist ein weiterer Wendepunkt von \(G_{f}\). Bestimmen Sie mithilfe dieser Informationen die Werte von \(a\) und \(b\).

    (Ergebnis: \(a = 1, b = -2\))

    (4 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = x^3 - 6x^2 + 11x - 6\) und \(x \in \mathbb R\).

    Weisen Sie nach, dass der Wendepunkt des Graphen von \(f\) auf der Geraden mit der Gleichung \(y = x - 2\) liegt.

    (3 BE)

  • Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

    (3 BE)

  • Der Graph einer in \(\mathbb R\) definierten Funktion \(g \, \colon \mapsto g(x)\) besitzt für \(-5 \leq x \leq 5\) zwei Wendepunkte. Entscheiden Sie, welcher der Graphen I, II und III zur zweiten Ableitungsfunktion \(g''\) von \(g\) gehört. Begründen Sie Ihre Entscheidung.

    Graph I zu Teilaufgabe 3

    Graph II zu Teilaufgabe 3

    Graph III zu Teilaufgabe 3

    (2 BE)

  • Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(g \colon x \mapsto x^2-e^x\). Der Graph von \(g\) besitzt genau einen Wendepunkt \(W\). Bestimmen Sie rechnerisch die \(x\)-Koordinate von \(W\) und beurteilen Sie, ob \(W\) oberhalb der \(x\)-Achse liegt.

    (5 BE)

  • Im Modell gibt es einen Zeitpunkt \(x_M\), zu dem die Blumen am schnellsten wachsen. Bestimmen Sie mithilfe von Abbildung 2 einen Näherungswert für \(x_M\). Ermitteln Sie anschließend einen Näherungswert für die maximale Wachstumsrate in Zentimetern pro Tag.

    (5 BE)

Seite 2 von 3