Wurzelfunktion

  • Berechnen Sie jeweils die erste Ableitung der folgenden Funktionen:

     

    a) \(f(x) = (3x + 2) \cdot \sqrt{\dfrac{1}{x} + 2}; \; x \neq 0\)

    b) \(g(x) = e^{\frac{\cos{x}}{x}}; \; x \neq 0\)

  • Aufgabe 1

    Berechnen Sie jeweils die erste Ableitung der folgenden Funktionen:

     

    a) \(f(x) = (3x + 2) \cdot \sqrt{\dfrac{1}{x} + 2}; \; x \neq 0\)

    b) \(g(x) = e^{\frac{\cos{x}}{x}}; \; x \neq 0\)

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto 2x^{2} \cdot \sin{x}\).

    Bestimmen Sie die Gleichung der Tangente \(T\) an den Graphen \(G_{f}\) der Funktion \(f\) an der Stelle \(x = \frac{\pi}{2}\).

     

    Aufgabe 3

    Gegeben ist die Funktionenschar \(f_{k} \colon x \mapsto x \cdot \sqrt{k - 2x}\) mit \(k \in \mathbb R^{+}\).

     

    a) Geben Sie die maximale Definitionsmenge von \(f_{k}\) in Abhängigkeit des Parameters \(k\) an.

    b) Untersuchen Sie das Symmetrieverhalten der Kurvenschar von \(f_{k}\) bezüglich des Koordinatensystems.

    c) Untersuchen Sie das Verhalten von \(f_{k}\) an den Rändern des Definitionsbereichs.

    d) Weisen Sie nach, dass für die Ableitung von \(f_{k}\) gilt: \(f'_{k}(x) = \dfrac{k - 3x}{\sqrt{k - 2x}}\).

    Im Folgenden sei \(k = 4\). Der Graph der Funktion \(f_{4}\) wird mit \(G_{f_{4}}\) bezeichnet.

    e) Mithilfe des Ansatzes \(x = f_{4}(x)\) lässt sich der Schnittpunkt des Graphen \(G_{f_{4}}\) mit dem Graphen der Umkehrfunktion von \(f_{4}\) ermitteln. Beschreiben Sie die Idee dieses Ansatzes. Eine Berechnung ist nicht erforderlich!

    f) Untersuchen Sie das Monotonieverhalten von \(f_{4}\) unter Berücksichtigung des maximalen Definitionsbereichs und bestimmen Sie die Lage und Art des Extrempunkts von \(G_{f_{4}}\).

     

    Aufgabe 4

    Gegeben sind die Punkte \(A(4|-2|-1)\), \(B(2|4|5)\) und \(C(5|-6|3)\).

     

    a) Ermitteln Sie die Größe des Innenwinkels \(\alpha\) des Dreiecks \(ABC\).

    b) Geben Sie die Gleichung der Kugel \(K\) mit dem Mittelpunkt \(C\) in Koordinatendarstellung an, auf deren Oberfläche der Punkt \(A\) liegt. Untersuchen Sie mithilfe der Kugelgleichung, ob der Punkt \(B\) innerhalb der Kugel \(K\), auf der Kugeloberfläche von \(K\) oder außerhalb von \(K\) liegt.

     

    Aufgabe 5

    Ein Unternehmen fertigt in großer Stückzahl ein elektronisches Bauteil. Bei der Herstellung können zwei Arten von Fehlern auftreten, ein elektrischer Fehler und ein optischer Fehler. Betrachtet werden folgende Ereignisse:

    \(E\): „Ein zufällig ausgewähltes Bauteil weist einen elektrischen Fehler auf."

    \(O\): „Ein zufällig ausgewähltes Bauteil weist einen optischen Fehler auf."

    Aus laufender Qualitätskontrolle ist bekannt, dass 5 % der gefertigten Bauteile einen elektrischen Fehler aufweisen. Zudem haben 3 % einen elektrischen, aber keinen optischen Fehler sowie 4 % einen optischen, aber keinen elektrischen Fehler.

     

    a) Beschreiben Sie das Ereignis \(\overline{E \cup O}\) im Sachzusammenhang.

    b) Erstellen Sie eine vollständig ausgefüllte Vierfeldertafel und geben Sie daraus an, mit welcher Wahrscheinlichkeit ein zufällig ausgewähltes Bauteil

    α) genau einen der beiden Fehler aufweist.

    β) höchstens einen der beiden Fehler aufweist.

    c) Untersuchen Sie die Ereignisse \(E\) und \(O\) auf Unabhängigkeit.

    d) Wie viele Bauteile müssen mindestens zufällig ausgewählt werden, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Bauteil zu erhalten, das einen elektrischen Fehler aufweist?

  • Aufgabe 1

    Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an und bestimmen Sie jeweils die Nullstelle(n). Bilden Sie jeweils die Ableitungsfunktion und vereinfachen Sie soweit wie möglich.

    a) \(f(x) = 2\ln{(3\sqrt{x})}\)

    b) \(g(x) = xe^{4 - 3x} + \dfrac{x^{2}}{e^{3x - 4}}\)

    c) \(h(x) = x^{3} \cdot \sin{\left( \dfrac{\pi}{3}x \right)}\)

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \ln{\left( -\dfrac{3}{x} \right)}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Bestimmen Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs \(D_{f}\).

    b) Zeigen Sie durch Rechnung, dass \(G_{f}\) in \(D_{f}\) linksgekrümmt ist.

     

    Aufgabe 3

    Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 2\sqrt{6 - x}\) mit dem Definitionsbereich \(D_{f} = [0;6]\). Der Punkt \(P(x|f(x))\), der Lotfußpunkt \(L(x|0)\) des Lotes von \(P\) auf die \(x\)-Achse und der Koordinatenursprung \(O\) legen das Dreieck \(OLP\) fest.

    Bestimmen Sie die Koordinaten des Punktes \(P\), sodass der Flächeninhalt \(A\) des Dreiecks \(OLP\) maximal ist.

    Abbildung zu Klausur Q11/2-004 Aufgabe 3

     

    Aufgabe 4

    Gegeben sind die Kugel \(K_{1}\) mit dem Mittelpunkt \(M_{1}(-3|5|8)\) und dem Radius \(r_{1} = 3\) sowie die Kugel \(K_{2}\) mit dem Mittelpunkt \(M_{2}(7|-5|3)\) und dem Radius \(r_{2} = 7\).

    Untersuchen Sie die gegenseitige Lage der Kugeln \(K_{1}\) und \(K_{2}\) und berechnen Sie ggf. den Abstand der beiden Kugeln.

     

    Aufgabe 5

    Bei der Herstellung wiederaufladbarer Batterien treten zwei Fehler auf.

    \(A\): Die Abmessung der Batterie weicht von der Typennorm ab.

    \(L\): Die Ladekapazität der Batterie liegt 20 % unter dem Sollwert.

    Laut Qualitätskontrolle weisen 15 % der Batterien den Fehler \(L\) auf und 5 % den Fehler \(A\). Die Wahrscheinlichkeit, dass mindestens einer der beiden Fehler auftritt, wird mit 17 % angegeben.

    a) Beschreiben Sie folgende Ereignisse im Sachzusammenhang:

    α) \(\overline{\overline{A} \cap \overline{L}}\)

    β) \((A \cap \overline{L}) \cup (\overline{A} \cap L)\)

    b) Erstellen Sie eine den Sachverhalt beschreibende vollständig ausgefüllte Vierfeldertaffel.

    c) Zeigen Sie dass die Ereignisse \(A\) und \(L\) stochastisch abhängig sind.

    d) Erstellen Sie ein vollständig ausgefülltes Baumdiagramm, beginnend mit dem Ereignis \(A\). Beschreiben Sie, woran sich die stochastische Abhängigkeit der Ereignisse \(A\) und \(L\) an diesem Baumdiagramm erkennen lässt.

  • Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 2\sqrt{6 - x}\) mit dem Definitionsbereich \(D_{f} = [0;6]\). Der Punkt \(P(x|f(x))\), der Lotfußpunkt \(L(x|0)\) des Lotes von \(P\) auf die \(x\)-Achse und der Koordinatenursprung \(O\) legen das Dreieck \(OLP\) fest.

    Bestimmen Sie die Koordinaten des Punktes \(P\), sodass der Flächeninhalt \(A\) des Dreiecks \(OLP\) maximal ist.

    Abbildung zu Klausur Q11/2-004 Aufgabe 3

  • Aufgabe 1

    Berechnen Sie jeweils die Menge aller Stammfunktionen folgender Funktionen:

    a) \(f(x) = 2\sqrt{3 - 2x}\)

    b) \(g(x) = \ln{\left( x^{2} \right)}; \; x \in \mathbb R^{+}\)

    c) \(h(x) = \dfrac{x}{2} \cdot e^{3x^{2} + 4}\)

     

    Aufgabe 2

    Abbildung 1 Klausur Q12/1-004 Aufgabe 2

    Abbildung 2 Klausur Q12/1-004 Aufgabe 2

    Abbildung 3 Klausur Q12/1-004 Aufgabe 2

    Abbildung 4 Klausur Q12/1-004 Aufgabe 2

    Die Abbildungen zeigen den Graphen \(G_{f}\) einer in \(\mathbb R\) definierten und stetigen Funktion \(f\) sowie die Graphen A, B und C.

    Entscheiden Sie, welcher der Graphen A, B oder C den Graphen der Integralfunktion \(\displaystyle I_{0} \colon x \mapsto \int_{0}^{x} f(t) dt\) darstellt, indem Sie begründen weshalb die beiden anderen Graphen nicht in Frage kommen. 

     

    Aufgabe 3

    Der Graph der Funktion \(f \colon x \mapsto \ln{x}\) und die Normale \(N\) im Punkt \(P(e|f(e))\) schließen im ersten Quadranten mit den Koordinatenachsen ein Flächenstück mit dem Flächeninhalt \(A\) ein.

    a) Skizzieren Sie den Graphen \(G_{f}\) der Funktion \(f\) sowie die Normale \(N\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\).

    b) Berechnen Sie den Flächeninhalt \(A\). Rechnen Sie mit exakten Werten.

     

    Aufgabe 4

    Ein Unternehmen stellt Tonerkassetten für Laserdrucker her. Eine Tonerkassette vom Typ XL300 kostet in der Herstellung 40 Euro. Aus laufender Qualitätskontrolle ist bekannt, dass 4 % aller Tonerkassetten vom Typ XL300 defekt sind. Im Falle einer defekten Tonerkassette bekommt ein Kunde diese kostenlos ersetzt. Das Unternehmen möchte pro verkaufter Tonerkassette vom Typ XL300 einen Gewinn in Höhe von 10 Euro erzielen.

    Zu welchem Preis muss das Unternehmen eine Tonerkassette vom Typ XL300 anbieten?

     

    Aufgabe 5

    Ein Laplace-Tetraeder (dreiseitige Pyramide mit vier kongruenten gleichseitigen Dreiecken) ist auf seinen vier Flächen mit je einer der Ziffern 1 bis 4 beschriftet. Es wird folgendes Spiel gespielt:

    Ein Spieler zahlt einen Einsatz in Höhe von 1 Euro. Dann setzt er auf eine der Ziffern 1, 2, 3 oder 4 und wirft das Tetraeder anschließend dreimal. Gewertet wird die Ziffer der Fläche, auf der das Tetraeder zu liegen kommt.

    Erzielt der Spieler bei keinem Wurf die gesetzte Ziffer, ist der Einsatz verloren.

    Erzielt der Spieler einmal die gesetzte Ziffer, erhält er den Einsatz zurück.

    Erzielt der Spieler zweimal die gesetzte Ziffer, erhält er den doppelten Einsatz zurück.

    Erzielt der Spieler dreimal die gesetzte Ziffer, erhält er den dreifachen Einsatz zurück.

    Die Zufallsgröße \(G\) beschreibt den Gewinn eines Spielers pro Spiel in Euro.

    a) Ermitteln Sie die Wahrscheinlichkeitsverteilung der Zufallsgröße \(G\).

    b) Berechnen Sie den Erwartungswert der Zufallsgröße \(G\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

  • Berechnen Sie jeweils die Menge aller Stammfunktionen folgender Funktionen:

    a) \(f(x) = 2\sqrt{3 - 2x}\)

    b) \(g(x) = \ln{\left( x^{2} \right)}; \; x \in \mathbb R^{+}\)

    c) \(h(x) = \dfrac{x}{2} \cdot e^{3x^{2} + 4}\)

  • Abbildung Aufgabe 1 Klausur Q12/2-001

    Die Abbildung zeigt je einen Ausschnitt des Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto \sqrt{x + 2} - 2\) und des Graphen \(G_{g}\) der Funktion \(g \colon x \mapsto -\sqrt{4 - x} + 4\).

    a) Beschreiben Sie schrittweise wie der Graph \(G_{f}\) und der Graph \(G_{g}\) jeweils aus dem Graphen der Funktion \(x \mapsto \sqrt{x}\) hervorgeht und bestimmen Sie jeweils die maximale Definitionsmenge der Funktionen \(f\) und \(g\) durch Rechnung.

    Betrachtet wird die Strecke \([PQ]\) der Punkte \(P(x|f(x))\) und \(Q(x|g(x))\) mit derselben Abszisse.

    b) Zeigen Sie, dass der Funktionsterm \(d(x) = -\sqrt{4 - x} -\sqrt{x + 2} + 6\) die Länge der Strecke \([PQ]\) in Abhängigkeit der \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\) beschreibt, und geben Sie die Definitionsmenge der Funktion \(d\) an.

    c) Bestimmen Sie die \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\), für die die Länge der Strecke \([PQ]\) minimal ist.

    Die Gerade \(x = -1\) und die Gerade \(x = 3\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein.

    d) Der Flächeninhalt \(A\) soll zunächst näherungsweise berechnet werden. Hierfür wird das Viereck \(SPQR\) betrachtet, welches die Punkte \(S(-1|f(-1))\), \(P(3|f(3))\), \(Q(3|g(3))\) und \(R(-1|g(-1))\) festlegen. Der Schnittpunkt der Strecken \([PR]\) und \([QS]\) halbiert die Strecken jeweils.

    Zeichnen Sie das Viereck \(SPQR\) in die Abbildung ein und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie die wesentlichen Schritte eines geeigneten Lösungsverfahrens, um \(A\) näherungsweise zu berechnen.

    e) Berechnen Sie den exakten Wert des Flächeninhalts \(A\).

    f) Betrachtet wird nun die Integralfunktion \(\displaystyle I \colon x \mapsto \int_{0}^{x} d(t) dt\).

    Geben Sie an, welche der folgenden Terme die Maßzahl des Flächeninhalts \(A\) berechnen (Falsche Antworten zählen negativ).

      (I)  \(I(-1) + I(3)\)

     (II)  \(I(-1) - I(3)\)

    (III)  \(I(3) - I(-1)\)

    (IV)  \(\vert I(-1) \vert - \vert I(3) \vert\)

     (V)  \(\vert I(-1) \vert + I(3)\)

    (VI)  \(I(-1) + \vert I(3) \vert\)

  • Aufgabe 1

    Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{8 - 2x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie die maximale Definitionsbemenge \(D_{f}\) sowie die Wertemenge \(W_{f}\) der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist. Bestimmen Sie den Funktionsterm \(f^{-1}(x)\). Geben Sie die Definitions- und die Wertemenge der Umkehrfunktion \(f^{-1}\) an.

    c) Der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{f^{-1}}\) der Umkehrfunktion \(f^{-1}\) schließen im ersten Quadranten mit den Koordinatenachsen ein herzförmiges Flächenstück mit dem Flächeninhalt \(A\) ein.

    Zeichnen Sie \(G_{f}\) sowie \(G_{f^{-1}}\) mithilfe der Funktionswerte \(f(0)\), \(f(2)\), \(f(3{,}5)\) und \(f(4)\) im ersten Quadranten eines gemeinsamen Koordinatensystems. Achten Sie dabei insbesondere auf den Verlauf von \(G_{f}\) an der Stelle \(x = 4\). Schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Berechnen Sie den Flächeninhalt \(A\).

     

    Aufgabe 2

    Geben Sie jeweils eine Gleichung der Gerade \(g\) an, für die gilt:

    a) Die Gerade \(g\) ist eine Ursprungsgerade und der Punkt \(P(1|3|4)\) liegt auf \(g\).

    b) Die Gerade \(g\) verläuft parallel zur \(x_{2}\)-Achse durch den Punkt \(Q(-2|2|0)\).

    c) Die Gerade \(g\) verläuft parallel zur \(x_{1}x_{3}\)-Ebene durch den Punkt \(R(-2{,}5|1|1)\).

    d) Die Gerade \(g\) verläuft durch die Punkte \(S(3|2|-1)\) und \(T(6|4|0)\).

     

    Aufgabe 3

    Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{u}\) und \(h \colon \overrightarrow{X} = \overrightarrow{B} + \mu \cdot \overrightarrow{v}\) mit \(\lambda, \mu \in \mathbb R\). Entscheiden Sie ob die folgenden Aussagen wahr oder falsch sind. Begründen Sie Ihre Entscheidung kurz.

    a) Gilt \(\overrightarrow{u} = k \cdot \overrightarrow{v}; \; k \in \mathbb R\), so verlaufen die Geraden \(g\) und \(h\) parallel zueinander.

    b) Gilt \(\overrightarrow{u} \circ \overrightarrow{v} = 0\), so schneiden sich die Geraden \(g\) und \(h\) rechtwinklig.

     

    Aufgabe 4

    Untersuchen Sie, ob die Punkte \(A(3|1|0)\), \(B(2|-1|-2)\), \(C(-2|1|-2)\) und \(D(4|3|-4)\) in einer Ebene liegen. 

     

    Aufgabe 5

    Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{8 - 2x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie die maximale Definitionsbemenge \(D_{f}\) sowie die Wertemenge \(W_{f}\) der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist. Bestimmen Sie den Funktionsterm \(f^{-1}(x)\). Geben Sie die Definitions- und die Wertemenge der Umkehrfunktion \(f^{-1}\) an.

    c) Der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{f^{-1}}\) der Umkehrfunktion \(f^{-1}\) schließen im ersten Quadranten mit den Koordinatenachsen ein herzförmiges Flächenstück mit dem Flächeninhalt \(A\) ein.

    Zeichnen Sie \(G_{f}\) sowie \(G_{f^{-1}}\) mithilfe der Funktionswerte \(f(0)\), \(f(2)\), \(f(3{,}5)\) und \(f(4)\) im ersten Quadranten eines gemeinsamen Koordinatensystems. Achten Sie dabei insbesondere auf den Verlauf von \(G_{f}\) an der Stelle \(x = 4\). Schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Berechnen Sie den Flächeninhalt \(A\).

  • Gegeben sind die folgenden Funktionen mit jeweils maximaler Definitionsmenge:

    \[p\,\colon x \mapsto \dfrac{1}{x - 1}\]

    \[q\,\colon x \mapsto \sqrt{x - 1}\]

    \[r\,\colon x \mapsto \ln (x - 1)\]

    Geben Sie jeweils die Definitionsmenge an und untersuchen Sie die Funktionen auf Nullstellen.

    (5 BE)

  • Betrachtet werden die folgenden Funktionsterme mit \(r,s \in \mathbb N\):

    \(e(x) = \sqrt{x - r} \qquad \qquad  \\ \)\(f(x) = \ln x \qquad \qquad \\ \)\(\displaystyle g(x) = -\frac{1}{x} + s\)

    Jeder der Terme beschreibt genau einen der folgenden Funktionsgraphen I,II und III. Ordnen Sie die Terme den Graphen zu und geben Sie die Werte der Parameter \(r\) und \(s\) an; begründen Sie jeweils Ihre Antwort.

    Graph I

    Graph II

    Graph III

    (5 BE)

  • Gegeben ist die Funktion \(f\,\colon x \mapsto 2 - \sqrt{12-2x}\) mit maximaler Definitionsmenge \(D_f = \; ]-\infty;6]\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

    Berechnen Sie die Koordinaten der Schnittpunkte von \(G_f\) mit den Koordinatenachsen. Bestimmen Sie das Verhalten von \(f\) für \(x \to -\infty\) und geben Sie \(f(6)\) an.

    (5 BE)

  • Ermitteln Sie den Wert des Parameters \(b\), sodass die Funktion \(g \colon x \mapsto \sqrt{x^2 - b}\) den maximalen Definitionsbereich \(\mathbb R \,\backslash\; ]-2;2[\) besitzt.

    (2 BE)

  • Geben Sie jeweils den Term einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Die Funktion \(g\) hat die maximale Definitionsmenge \(]-\infty;5[\). 

    (2 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{1 - \ln{x}}\) mit maximaler Definitionsmenge \(D\).

    Bestimmen Sie \(D\).

    (2 BE)

  • Eine dritte Modellierung des Querschnitts der Tunnelwand, bei der ebenfalls die Bedingungen I und II erfüllt sind, verwendet die Funktion \(f \colon x \mapsto \sqrt{25 - x^{2}}\) mit dem Definitionsbereich \(D_{f} = [-5;5]\).

    Begründen Sie, dass in diesem Modell jeder Punkt des Querschnitts der Tunnelwand von der Bodenmitte \(M\) den Abstand 5 m hat. Zeichnen Sie den Graphen von \(f\) in ein Koordinatensystem ein (Platzbedarf im Hinblick auf spätere Aufgaben: \(-5 \leq x \leq 9\), \(-1 \leq y \leq 13\)) und begründen Sie, dass bei dieser Modellierung auch Bedingung III erfüllt ist.

    (5 BE)

  • Berechnen Sie, um wie viel Prozent der Inhalt der Querschnittsfläche des Tunnels bei einer Modellierung mit \(f\) von dem in Aufgabe 2a berechneten Wert abweicht.

    (2 BE)

Seite 1 von 2