Bedingte Wahrscheinlichkeit

  • Ein Investor plant, in einer Gemeinde, die aus den Orten Oberberg und Niederberg bestehen, eine Windkraftanlage zu errichten.

    Um sich einen Überblick darüber zu verschaffen, wie die Einwohner zu diesem Vorhaben stehen, beschließt der Gemeinderat, eine Umfrage unter den Wahlberechtigten der Gemeinde durchzuführen. In Niederberg werden 1722, in Oberberg 258 Einwohner befragt. 1089 aller Befragten äußern keine Einwände gegen die Windkraftanlage, darunter sind allerdings nur 27 Einwohner von Oberberg. Die übrigen befragten Personen sprechen sich gegen die Windkraftanlage aus.

    Bestimmen Sie jeweils den prozentualen Anteil der Gegner der Windkraftanlage unter den Befragten von Niederberg und unter den Befragten von Oberberg.

    (4 BE)

  • Berechnen Sie die Wahrscheinlichkeiten \(P(T)\) und \(P_T(S)\). Interpretieren Sie das Ergebnis für \(P_T(S)\) im Sachzusammenhang.

    (zur Kontrolle: \(P(T) \approx 0{,}85\,\%\), \(P_T(S) < 0{,}1\))

    (8 BE)

  • In einer Großstadt steht die Wahl des Oberbürgermeisters bevor. 12 % der Wahlberechtigten sind Jungwähler, d.h. Personen im Alter von 18 bis 24 Jahren. Vor Beginn des Wahlkampfs wird eine repräsentative Umfrage unter den Wahlberechtigten durchgeführt. Der Umfrage zufolge haben sich 44 % der befragten Wahlberechtigten bereits für einen Kandidaten entschieden. Jeder Siebte derjenigen Befragten, die sich noch nicht für einen Kandidaten entschieden haben, ist Jungwähler.

    Betrachtet werden folgende Ereignisse:

    \(J\): „Eine aus den Befragten zufällig ausgewählte Person ist Jungwähler."

    \(K\): „Eine aus den Befragten zufällig ausgewählte Person hat sich bereits für einen Kandidaten entschieden."

    Erstellen Sie zu dem beschriebenen Sachzusammenhang eine vollständig ausgefüllte Vierfeldertafel.

    (4 BE)

  • Zeigen Sie, dass \(P_J(\overline{K}) > P_{\overline{J}}(\overline{K})\) gilt.

    Begründen Sie, dass es trotz der Gültigkeit dieser Ungleichung nicht sinnvoll ist, sich im Wahlkampf vorwiegend auf die Jungwähler zu konzentrieren.

    (4 BE)

Seite 3 von 3