Binomialverteilte Zufallsgröße

  • Beim Torwandschießen treten zwei Schützen gegeneinander an. Zunächst gibt der eine sechs Schüsse ab, anschließend der andere. Wer dabei mehr Treffer erzielt, hat gewonnen; andernfalls geht das Torwandschießen unentschieden aus.

    Joe trifft beim Torwandschießen bei jedem Schuss mit einer Wahrscheinlichkeit von 20 %, Hans mit einer Wahrscheinlichkeit von 30 %.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass Joe beim Torwandschießen gegen Hans gewinnt, wenn Hans bei seinen sechs Schüssen genau zwei Treffer erzielt hat. Erläutern Sie anhand einer konkreten Spielsituation, dass das dieser Aufgabe zugrunde gelegte mathematische Modell im Allgemeinen nicht der Realität entspricht.

    (4 BE)

  • Gegeben ist eine binomialverteilte Zufallsgröße \(X\) mit dem Parameterwert \(n = 5\). Dem Diagramm in Abbildung 1 kann man die Wahrscheinlichkeitswerte \(P(X \leq k)\) mit \(k \in \{0; 1; 2; 3; 4\}\) entnehmen.

    Ergänzen Sie den zu \(k = 5\) gehörenden Wahrscheinlichkeitswert im Diagramm. Ermitteln Sie näherungsweise die Wahrscheinlichkeit \(P(X = 2)\).

    Abb. 1Abbildung 1 Aufgabe 2 Stochastik 2 Mathematik Abitur Bayern 2019 A

    (2 BE)

  • Möchte man an einer Fahrt teilnehmen, so muss man dafür im Voraus eine Reservierung vornehmen, ohne dabei schon den Fahrpreis bezahlen zu müssen. Erfahrungsgemäß erscheinen von den Personen mit Reservierung einige nicht zur Fahrt. Für die 60 zur Verfügung stehenden Plätze lässt das Unternehmen deshalb bis zu 64 Reservierungen zu. Es soll davon ausgegangen werden, dass für jede Fahrt tatsächlich 64 Reservierungen vorgenommen werden. Erscheinen mehr als 60 Personen mit Reservierung zur Fahrt, so können nur 60 von ihnen daran teilnehmen; die übrigen müssen abgewiesen werden.
    Die Zufallsgröße \(X\) beschreibt die Anzahl der Personen mit Reservierung, die nicht zur Fahrt erscheinen. Vereinfachend soll angenommen werden, dass \(X\) binomialverteilt ist, wobei die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, 10 % beträgt. Die auf der nächsten Seite abgebildete Tabelle ergänzt das zugelassene Tafelwerk (vgl. Seitenende).

    Geben Sie einen Grund an, dass es sich bei der Annahme, die Zufallsgröße \(X\) ist binomialverteilt, im Sachzusammenhang um eine Vereinfachung handelt.

    (1 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass keine Person mit Reservierung abgewiesen werden muss.

    (3 BE)

  • Für das Unternehmen wäre es hilfreich, wenn die Wahrscheinlichkeit dafür, mindestens eine Person mit Reservierung abweisen zu müssen, höchstens ein Prozent wäre. Dazu müsste die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, mindestens einen bestimmten Wert haben. Ermitteln Sie diesen Wert auf ganze Prozent genau.

    (3 BE)

  • Das Unternehmen richtet ein Online-Portal zur Reservierung ein und vermutet, dass dadurch der Anteil der Personen mit Reservierung, die zur jeweiligen Fahrt nicht erscheinen, zunehmen könnte. Als Grundlage für die Entscheidung darüber, ob pro Fahrt künftig mehr als 64 Reservierungen zugelassen werden, soll die Nullhypothese „Die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, beträgt höchstens 10 %." mithilfe einer Stichprobe von 200 Personen mit Reservierung auf einem Signifikanzniveau von 5 % getestet werden. Vor der Durchführung des Tests wird festgelegt, die Anzahl der für eine Fahrt möglichen Reservierungen nur dann zu erhöhen, wenn die Nullhypothese aufgrund des Testergebnisses abgelehnt werden müsste.

    Ermitteln Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Jeder sechste Besucher eines Volksfests trägt ein Lebkuchenherz um den Hals. Während der Dauer des Volksfests wird 25-mal ein Besucher zufällig ausgewählt. Die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Besucher, die ein Lebkuchenherz tragen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Besuchern höchstens ein Besucher ein Lebkuchenherz trägt.

    (2 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem Term \(\sum \limits_{i\,=\,5}^{8}B\left( 25;\frac{1}{6};i \right)\) berechnet werden kann.

    (2 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der Zufallsgröße \(X\) höchstens um eine Standardabweichung vom Erwartungswert der Zufallsgröße abweicht.

    (4 BE)

  • Die Inhaberin der Losbude beschäftigt einen Angestellten, der Besucher des Volksfests anspricht, um diese zum Kauf von Losen zu animieren. Sie ist mit der Erfolgsquote des Angestellten unzufrieden.

    Die Inhaberin möchte dem Angestellten das Gehalt kürzen, wenn weniger als 15 % der angesprochenen Besucher Lose kaufen. Die Entscheidung über die Gehaltskürzung soll mithilfe eines Signifikanztests auf der Grundlage von 100 angesprochenen Besuchern getroffen werden. Dabei soll möglichst vermieden werden, dem Angestellten das Gehalt zu Unrecht zu kürzen. Geben Sie die entsprechende Nullhypothese an und ermitteln Sie die zugehörige Entscheidungsregel auf dem Signifikanzniveau von 10 %.

    (5 BE)

  • Bestimmen Sie unter Zuhilfenahme des Tafelwerks, wie viele Flaschen man mindestens öffnen muss, um mit einer Wahrscheinlichkeit von mehr als 5 % mindestens zwei Gewinnmarken zu finden.

    (4 BE)

  • Im Rahmen der Begrüßung durch die Schulleiterin werden aus allen Spielerinnen und Spielern zunächst zehn Kinder ausgelost, die je einen Fußball erhalten sollen. Um die Wahrscheinlichkeit dafür zu berechnen, dass fünf Mädchen und fünf Jungen einen Ball erhalten, verwendet Max den Ansatz

    \[\binom{10}{5} \cdot \left( \frac{2}{3} \right)^{5} \cdot \left( \frac{1}{3} \right)^{5}\]

    Geben Sie an, ob Max dabei vom Modell „Ziehen mit Zurücklegen" oder vom Modell „Ziehen ohne Zurücklegen" ausgeht. Begründen Sie rechnerisch unter Zugrundelegung eines im Sachkontext realistischen Zahlenwerts für die Gesamtzahl der Spielerinnen und Spieler, dass die von Max berechnete Wahrscheinlichkeit nur geringfügig von der tatsächlichen Wahrscheinlichkeit abweicht.

    (5 BE)

Seite 3 von 3