Geometrie 2

  • Eine Kugel besitzt den Mittelpunkt \(M\,(-3|2|7)\). Der Punkt \(P\,(3|4|4)\) liegt auf der Kugel.

    Der Punkt \(Q\) liegt ebenfalls auf der Kugel, die Strecke \([PQ]\) verläuft durch deren Mittelpunkt. Ermitteln Sie die Koordinaten von \(Q\).

    (3 BE)

  • Weisen Sie nach, dass die Kugel die \(x_1x_2\)-Ebene berührt.

    (2 BE)

  • Berechnen Sie das Volumen des Körpers \(ABCDEF\).

    (3 BE) 

  • Der Körper kann in neun Pyramiden zerlegt werden, von denen jede kongruent zu genau einer der drei  Pyramiden \(ABFS\), \(HDES\) bzw. \(EFGHS\) ist (vgl. Abbildung 2). Die Pyramide \(ABFS\) hat das Volumen \(\sf{33\frac{1}{3}}\) und die Pyramide \(HDES\) hat das Volumen \(\sf{13\frac{1}{3}}\). Bestimmen Sie das Volumen des gesamten Körpers.

    Abbildung 2 Teilaufgabe f Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2021

    (4 BE)

  • Gegeben sind in einem kartesischen Koordinatensystem die Ebene \(E \colon 4x_{1} - 8x_{2} + x_{3} + 50 = 0\) und die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 3 \\ 12 \\ -2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix}, \; \lambda \in \mathbb R\,.\)

    Erläutern Sie, warum die folgende Rechnung ein Nachweis dafür ist, dass \(g\) und \(E\) genau einen gemeinsamen Punkt haben:

    \[\begin{pmatrix} 4 \\ -8 \\ 1 \end{pmatrix} \circ \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix} = -72 \neq 0\]

    (1 BE)

  • Auf der Geraden \(t\) wird nun der Punkt \(M\) so festgelegt, dass der Abstand der Dachgaube vom First 1 m beträgt. Bestimmen Sie die Koordinaten von \(M\).

    (3 BE)

  • Die Punkte \(M\) und \(N\) liegen auf der Geraden
    \(\displaystyle \overrightarrow{X} = \begin{pmatrix} 4{,}8 \\ 8 \\ 7{,}4 \end{pmatrix} + \mu \cdot \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}\), \(\mu \in \mathbb R\),
    die im Modell die Neigung der Dachfläche der Gaube festlegt. Die zur \(x_3\)-Achse parallele Strecke \([NL]\) stellt im Modell den sogenannten Gaubenstiel dar; dessen Länge soll 1,4 m betragen. Um die Koordinaten von \(N\) und \(L\) zu bestimmen, wird die Ebene \(F\) betrachtet, die durch Verschiebung von \(E\) um 1,4 in positive \(x_3\)-Richtung entsteht.

    Begründen Sie, dass \(3x_1 + 4x_3 - 49{,}6 = 0\) eine Gleichung von \(F\) ist.

    (3 BE)

  • Für die Fernsehübertragung eines Fußballspiels wird über dem Spielfeld eine bewegliche Kamera installiert. Ein Seilzugsystem, das an vier Masten befestigt wird, hält die Kamera in der gewünschten Position. Seilwinden, welche die Seile koordiniert verkürzen und verlängern, ermöglichen eine Bewegung der Kamera.

    In der Abbildung ist das horizontale Spielfeld modellhaft als Rechteck in der \(x_{1}x_{2}\)-Ebene eines kartesischen Koordinatensystems dargestellt. Die Punkte \(W_{1}\), \(W_{2}\), \(W_{3}\) und \(W_{4}\) beschreiben die Positionen der vier Seilwinden. Eine Längeneinheit im Koordinatensystem entspricht 1 m in der Realität, d. h. alle vier Seilwinden sind in einer Höhe von 30 m angebracht.

    Abbildung zu Geometrie 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Der Punkt \(A(45|60|0)\) beschreibt die Lage des Anstoßpunkts auf dem Spielfeld. Die Kamera befindet sich zunächst in einer Höhe von 25 m vertikal über dem Anstoßpunkt. Um den Anstoß zu filmen, wird die Kamera um 19 m vertikal abgesenkt. In der Abbildung ist die ursprüngliche Kameraposition durch den Punkt \(K_{0}\), die abgesenkte Position durch den Punkt \(K_{1}\) dargestellt.

    Berechnen Sie die Seillänge, die von jeder der vier Seilwinden abgerollt werden muss, um dieses Absenken zu ermöglichen, wenn man davon ausgeht, dass die Seile geradlinig verlaufen.

    (4 BE)

  • Die Abbildung zeigt die Pyramide \(ABCDS\) mit quadratischer Grundfläche \(ABCD\). Der Pyramide ist eine Stufenpyramide einbeschrieben, die aus Würfeln mit der Kantenlänge 1 besteht.

    Abbildung zu Teilaufgabe 2 Geometrie 2 Prüfungsteil A Mathematik Abitur Bayern 2015

    Geben Sie das Volumen der Stufenpyramide und die Höhe der Pyramide \(ABCDS\) an.

    (2 BE)

  • Bestimmen Sie unter Verwendung eines geeignet gewählten kartesischen Koordinatensystems eine Gleichung für die Gerade, die durch die Punkte \(B\) und \(S\) verläuft.

    Zeichnen Sie das gewählte Koordinatensystem in die Abbildung ein.

    (3 BE)

  • Auf der Kante \([AD]\) liegt der Punkt \(Q\), auf der Kante \([BE]\) der Punkt \(R(0|6|2)\). Das Dreieck \(FQR\) hat in \(Q\) einen rechten Winkel. Bestimmen Sie die \(x_3\)-Koordinate von \(Q\).

    (5 BE) 

  • Wird der Punkt \(P(1|2|3)\) an der Ebene \(E\) gespiegelt, so ergibt sich der Punkt \(Q(7|2|11)\).

    Bestimmen Sie eine Gleichung von \(E\) in Koordinatenform.

    (3 BE)

  • Ermitteln Sie die Koordinaten des Eckpunkts \(S\) der Raute \(PQRS\). Zeigen Sie, dass \(PQRS\) kein Quadrat ist.

    (2 BE)

  • Sonnenlicht, das an einem Sommertag zu einem bestimmten Zeitpunkt \(t_{0}\) auf die Sonnenuhr einfällt, wird im Modell durch parallele Geraden mit dem Richtungsvektor \(\overrightarrow{u} = \begin{pmatrix} 6 \\ 6 \\ -13 \end{pmatrix}\) dargestellt.

    Weisen Sie nach, dass der Schatten der im Modell durch den Punkt \(S\) dargestellten Spitze des Polstabs außerhalb der rechteckigen Grundplatte liegt.

    (6 BE)

  • Um 6 Uhr verläuft der Schatten des Polstabs im Modell durch den Mittelpunkt der Kante \([BC]\), um 12 Uhr durch den Mittelpunkt der Kante \([AB]\) und um 18 Uhr durch den Mittelpunkt der Kante \([AD]\). Begründen Sie, dass der betrachtete Zeitpunkt \(t_{0}\) vor 12 Uhr liegt.

    (2 BE)

  • Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

    Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

    Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

    (3 BE)

  • Die Punkte \(A\), \(B\) und \(E\,(1|2|5)\) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden. Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten.

    Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.

    (2 BE)

  • Die Punkte \(P\) und \(Q\) liegen symmetrisch zu einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\).

    (3 BE)

  • Gegeben sind die Punkte \(A(3|5|5)\) und \(B(1|1|1)\) sowie die Geraden \(g\) und \(h\), die sich in \(B\) schneiden. Die Gerade \(g\) hat den Richtungsvektor \(\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}\), die Gerade \(h\) den Richtungsvektor \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\).

    Weisen Sie nach, dass \(A\) auf \(g\) liegt.

    (1 BE) 

  • Die Ebene \(E\) hat die Gleichung \(2x_1 + x_2 + x_3 = 6\). Bestimmen Sie die Größe des Winkels, den \(E\) mit der \(x_1x_2\)-Ebene einschließt.

    (3 BE)