Geometrie 2

  • Zeichnen Sie die sechs Punkte, in denen \(M\) die Kanten des Würfels schneidet, sowie die sechseckige Schnittfigur in die Abbildung ein.

    (3 BE)

  • Jede Ebene, die parallel zu \(M\) verläuft, wird durch eine Gleichung der Form \(x_1 - x_2 + x_3 = p\) mit \(p \in \mathbb R\) beschrieben. Nennen Sie die Arten der Figuren, in denen eine solche Ebene den Würfel schneiden kann, und geben Sie die Menge aller Werte von \(p\) an, für die die Schnittfigur ein Sechseck ist.

    (4 BE)

  • Für die Fernsehübertragung eines Fußballspiels wird über dem Spielfeld eine bewegliche Kamera installiert. Ein Seilzugsystem, das an vier Masten befestigt wird, hält die Kamera in der gewünschten Position. Seilwinden, welche die Seile koordiniert verkürzen und verlängern, ermöglichen eine Bewegung der Kamera.

    In der Abbildung ist das horizontale Spielfeld modellhaft als Rechteck in der \(x_{1}x_{2}\)-Ebene eines kartesischen Koordinatensystems dargestellt. Die Punkte \(W_{1}\), \(W_{2}\), \(W_{3}\) und \(W_{4}\) beschreiben die Positionen der vier Seilwinden. Eine Längeneinheit im Koordinatensystem entspricht 1 m in der Realität, d. h. alle vier Seilwinden sind in einer Höhe von 30 m angebracht.

    Abbildung zu Geometrie 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Der Punkt \(A(45|60|0)\) beschreibt die Lage des Anstoßpunkts auf dem Spielfeld. Die Kamera befindet sich zunächst in einer Höhe von 25 m vertikal über dem Anstoßpunkt. Um den Anstoß zu filmen, wird die Kamera um 19 m vertikal abgesenkt. In der Abbildung ist die ursprüngliche Kameraposition durch den Punkt \(K_{0}\), die abgesenkte Position durch den Punkt \(K_{1}\) dargestellt.

    Berechnen Sie die Seillänge, die von jeder der vier Seilwinden abgerollt werden muss, um dieses Absenken zu ermöglichen, wenn man davon ausgeht, dass die Seile geradlinig verlaufen.

    (4 BE)

  • Ein geschlossenes Zelt, das auf horizontalem Untergrund steht, hat die Form einer Pyramide mit quadratischer Grundfläche. Die von der Zeltspitze ausgehenden Seitenkanten werden durch vier gleich lange Stangen gebildet. das Zelt ist 6 m hoch, die Seitenlänge des Zeltbodens beträgt 5 m.

    Das Zelt wird in einem kartesischen Koordinatensystem (vgl. Abbildung) modellhaft durch eine Pyramide \(ABCDS\) mit der Spitze \(S(2{,}5|2{,}5|6)\) dargestellt. Der Punkt \(A\) liegt im Koordinatenursprung, \(C\) hat die Koordinaten \((5|5|0)\). Der Punkt \(B\) liegt auf der \(x_{1}\)-Achse, \(D\) auf der \(x_{2}\)-Achs. Das Dreieck \(CDS\) liegt in der Ebene \(E\colon 12x_{2} + 5x_{3} = 60\). Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität.

    Abbildung 1 Teilaufgabe a Geometrie 2 Mathematik Abitur Bayern 2017 B

     

    Geben Sie die Koordinaten der Punkte \(B\) und \(D\) an und zeichnen Sie die Pyramide in ein Koordinatensystem ein.

    (3 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Die Ebene \(E\) teilt den Quader in zwei Teilkörper. Bestimmen Sie den Anteil des Volumens des pyramidenförmigen Teilkörpers am Volumen des Quaders, ohne die Volumina zu berechnen.

    (3 BE)

  • Weisen Sie nach, dass die Größe des Winkels, unter dem die Gerade \(OS\) die Ebene \(E_k\) schneidet, unabhängig von \(k\) ist.

    (4 BE)

  • Gegeben sind die beiden bezüglich der \(x_{1}x_{3}\)-Ebene symmetrisch liegenden Punkte \(A(2|3|1)\) und \(B(2|-3|1)\) sowie der Punkt \(C(0|2|0)\).

    Weisen Sie nach, dass das Dreieck \(ABC\) bei \(C\) rechtwinklig ist.

    (3 BE)

  • Machen Sie plausibel, dass folgende allgemeine Schlussfolgerung falsch ist: „Liegen der Startpunkt und der anvisierte höchste Punkt einer Flugbahn des Balls im Modell unterhalb der Ebene \(E\), so kann der Ball entlang seiner Bahn die Seile, die durch \([W_{1}K_{2}]\) und \([W_{2}K_{2}]\) beschrieben werden, nicht berühren."

    (2 BE)

  • Der Torwart führt den Abstoß aus. Der höchste Punkt der Flugbahn des Balls wird im Modell durch den Punkt \(H(50|70|15)\) beschrieben.

    Ermitteln Sie eine Gleichung der durch die Punkte \(W_{1}\), \(W_{2}\) und \(K_{2}\) festgelegten Ebene \(E\) in Normalenform und weisen Sie nach, dass \(H\) unterhalb von \(E\) liegt.

    (Mögliches Teilergebnis: \(E \colon x_{2} + 5x_{3} - 150 = 0\))

    (7 BE)

  • Im Zielpunkt ist die Kamera zunächst senkrecht nach unten orientiert. Um die Position des Balls anzuvisieren, die im Modell durch den Punkt \(B(40|105|0)\) beschrieben wird, muss die Kamera gedreht werden.

    Berechnen Sie die Größe des erforderlichen Drehwinkels. 

    (4 BE)

  • Kurze Zeit später legt sich ein Torhüter den Ball für einen Abstoß bereit. Der Abstoß soll von der Kamera aufgenommen werden. Durch das gleichzeitige Verlängern beziehungsweise Verkürzen der vier Seile wird die Kamera entlang einer geraden Bahn zu einem Zielpunkt bewegt, der in einer Höhe von 10 m über dem Spielfeld liegt. Im Modell wird der Zielpunkt durch den Punkt \(K_{2}\) beschrieben, die Bewegung der Kamera erfolgt vom Punkt \(K_{1}\) entlang der Geraden mit der Gleichung \(g \colon \overrightarrow{X} = \overrightarrow{K_{1}} + \lambda \cdot \begin{pmatrix} 3 \\ 20 \\ 2 \end{pmatrix}, \, \lambda \in \mathbb R\), zum Punkt \(K_{2}\).

    Bestimmen Sie die Koordinaten von \(K_{2}\).

    (Ergebnis: \(K_{2}(51|100|10)\))

    (3 BE)

  • Ermitteln Sie eine Gleichung der Ebene \(F\), in der das Dreieck \(DAS\) liegt, in Normalenform.

    (mögliches Ergebnis: \(F \colon 12x_{1} - 5x_{3} = 0\))

    (3 BE)

  • Das Saarpolygon wird mit verschiedenen Blickrichtungen betrachtet. Die Abbildungen 3 und 4 stellen das Saarpolygon für zwei Blickrichtungen schematisch dar.

     

    Abbildung 3 Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2022Abb. 3

    Abbildung 4 Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2022Abb. 4

     

    Geben Sie zu jeder der beiden Abbildungen 3 und 4 einen möglichen Vektor an, der die zugehörige Blickrichtung beschreibet. Stellen Sie das Saarpolygon schematisch für eine Betrachtung von oben dar.

    (4 BE)

  • Die Ebene \(E\) hat die Gleichung \(2x_1 + x_2 + x_3 = 6\). Bestimmen Sie die Größe des Winkels, den \(E\) mit der \(x_1x_2\)-Ebene einschließt.

    (3 BE)

  • Gegeben sind die Ebene \(E \colon 2x_{1} + x_{2} + 2x_{3} = 6\) sowie die Punkte \(P(1|0|2)\) und \(Q(5|2|6)\).

    Zeigen Sie, dass die Gerade durch die Punkte \(P\) und \(Q\) senkrecht zur Ebene \(E\) verläuft.

    (2 BE)

  • Die Punkte \(P\) und \(Q\) liegen symmetrisch zu einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\).

    (3 BE)

  • Die Punkte \(A\), \(B\) und \(E\,(1|2|5)\) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden. Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten.

    Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.

    (2 BE)

  • Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

    Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

    Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

    (3 BE)

  • Um 6 Uhr verläuft der Schatten des Polstabs im Modell durch den Mittelpunkt der Kante \([BC]\), um 12 Uhr durch den Mittelpunkt der Kante \([AB]\) und um 18 Uhr durch den Mittelpunkt der Kante \([AD]\). Begründen Sie, dass der betrachtete Zeitpunkt \(t_{0}\) vor 12 Uhr liegt.

    (2 BE)