Stochastik 1

  • Die Abbildung zeigt Daten zu den Rauchergewohnheiten der Bevölkerung Deutschlands, die das Statistische Bundesamt auf der Grundlage einer repräsentiven statistischen Erhebung veröffentlicht hat.

    Abbildung zu Aufgabengruppe Stochastik 1

    Der Abbildung lässt sich beispielsweise entnehmen, dass 17 % der 65- bis 69-jährigen Männer rauchen. Somit kann im Folgenden davon ausgegangen werden, dass die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Mann aus dieser Altersgruppe raucht, 17 % beträgt.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter 25- bis 29-jähriger Mann Nichtraucher ist.

    (2 BE)

  • Eine Kiste enthält vier blaue, zwei gelbe und drei rote Bausteine. Zwei Bausteine werden zufällig entnommen.

    Zeigen Sie, dass die Wahrscheinlichkeit dafür, dass die beiden Bausteine die gleiche Farbe haben, \(\frac{5}{18}\) beträgt.

    (3 BE)

  • Die Zufallsgröße \(X\) ordnet jedem Ergebnis die Anzahl der entsprechenden Münzwürfe zu. Berechnen Sie den Erwartungswert von \(X\).

    (3 BE)

  • Das Glücksrad wird zehnmal gedreht. Geben Sie einen Term an, mit dem die Wahrscheinlichkeit dafür berechnet werden kann, dass der blaue Sektor genau zweimal getroffen wird.

    (1 BE)

  • Im Folgenden gilt beim Öffnen einer Flasche steht \(P(A) = 0{,}05\) und \(P(B) = 0{,}044\).

    Es werden nacheinander zehn Flaschen geöffnet. Berechnen Sie die Wahrscheinlichkeit dafür, dass sich erstmals in der fünften Flasche eine Gewinnmarke befindet. 

    (2 BE)

  • Am Ausgang des Freizeitparks gibt es einen Automaten, der auf Knopfdruck einen Anstecker mit einem lustigen Motiv bedruckt und anschließend ausgibt. Für den Druck wird aus \(n\) verschiedenen Motiven eines zufällig ausgewählt, wobei jedes Motiv die gleiche Wahrscheinlichkeit hat.

    Ein Kind holt sich drei Anstecker aus dem Automaten.

    Bestimmen Sie für den Fall \(n = 5\) die Wahrscheinlichkeit dafür, dass nicht alle drei Anstecker dasselbe Motiv haben.

    (2 BE)

  • Geben Sie einen Term an, mit dem die Wahrscheinlichkeit dafür berechnet werden kann, dass jede Zahl mindestens einmal erzielt wird.

    (3 BE) 

  • Bestimmen Sie unter Zuhilfenahme des Tafelwerks, wie viele Flaschen man mindestens öffnen muss, um mit einer Wahrscheinlichkeit von mehr als 5 % mindestens zwei Gewinnmarken zu finden.

    (4 BE)

  • Es werden mehrere Flaschen geöffnet und für jede dieser Flaschen wird festgestellt, ob das Ereignis \(A\) eintritt. Begründen Sie, dass dieses Zufallsexperiment näherungsweise durch eine Bernoullikette beschrieben werden kann.

    (2 BE)

  • Ein Getränkehersteller führt eine Werbeaktion durch, um die Verkaufszahlen seiner Saftschorlen zu erhöhen. Bei 100000 der für die Werbeaktion produzierten zwei Millionen Flaschen wird auf der Innenseite des Verschlusses eine Marke für einen Geldgewinn angebracht. Von den Gewinnmarken sind 12000 jeweils 5 € wert, der Rest ist jeweils 1 € wert. Alle Flaschen der Werbeaktion werden zufällig auf Kästen verteilt. Im Folgenden werden nur Flaschen aus der Werbeaktion betrachtet.

    Es wird eine Flasche geöffnet. Betrachtet werden folgende Ereignisse:

    \(A\): „Der Verschluss enthält eine Gewinnmarke."

    \(B\): „Der Verschluss enthält eine Gewinnmarke im Wert von 1 €."

    Berechnen Sie die Wahrscheinlichkeiten \(P(A)\) und \(P(B)\).

    (2 BE)

  • Die beiden Baumdiagramme gehören zum selben Zufallsexperiment mit den Ereignissen \(A\) und \(B\).

    Berechnen Sie die Wahrscheinlichkeit \(P(B)\) und ergänzen Sie anschließend an allen Ästen des rechten Baumdiagramms die zugehörigen Wahrscheinlichkeiten.

     

    Abbildung Baumdiagramm links zu Teilaufgabe 1 - Stochastik 1 - Prüfungsteil A - Mathematik Abitur Bayern 2016
    Abbildung Baumdiagramm rechts zu Teilaufgabe 1 - Stochastik 1 - Prüfungsteil A - Mathematik Abitur Bayern 2016

     

    (Teilergebnis: \(P(B) = 0{,}5\))

    (5 BE)

  • Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl \((Z)\) oder zum zweiten Mal Wappen \((W)\) oben liegt. Als Ergebnismenge wird festgelegt: \(\{ZZ; WW; ZWZ; ZWW; WZZ; WZW\}\).

    Begründen Sie, dass dieses Zufallsexperiment kein Laplace-Experiment ist.

    (2 BE)

  • Die Wahrscheinlichkeit dafür, dass beim einmaligen Drehen der gelbe Sektor getroffen wird, beträgt 50 %. Felix hat 100 Drehungen des Glücksrads beobachtet und festgestellt, dass bei diesen der Anteil der Drehungen, bei denen der gelbe Sektor getroffen wurde, deutlich geringer als 50 % war. Er folgert: „Der Anteil der Drehungen, bei denen der gelbe Sektor getroffen wird, muss also bei den nächsten 100 Drehungen deutlich größer als 50 % sein." Beurteilen Sie die Aussage von Felix.

    (2 BE)

  • Begründen Sie, dass die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, den Wert \(\dfrac{(n - 1) \cdot (n - 2)}{n^{2}}\) hat.

    (2 BE)

  • Im Dezember 2021 wurden in Norwegen rund 14 000 Pkw neu zugelassen. In einer vereinfachten Übersicht sind die Anteile der verschiedenen Antriebsarten an diesen Neuzulassungen dargestellt.

    Tabelle Aufgabe 1 Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2023

    Für eine Untersuchung werden aus diesen Neuzulassungen 200 Fahrzeuge zufällig ausgewählt und deren Besitzer nach den Gründen für die Wahl der Antriebsart befragt. Da aus einer großen Anzahl von Fahrzeugen nur verhältnismäßig wenige ausgewählt werden, wird das Urnenmodell „Ziehen mit Zurücklegen" verwendet.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(D\): „Unter den ausgewählten Pkw befinden sich sieben oder acht Verbrenner mit Dieselmotor."

    \(E\): „Unter den ausgewählten Pkw befinden sich mehr als 135 mit rein elektrischem Antrieb."

    (4 BE) 

  • Die Wahrscheinlichkeit, dass ein Kunde bei seinem Einkauf den niedrigsten Rabatt erhält, beträgt \(\sf{\frac{1}{9}}\). Bestimmen Sie, wie viele Kunden mindestens an dem Glücksrad drehen müssen, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens einer der Kunden den niedrigsten Rabatt erhält.

    (4 BE)

  • Die Geschäftsführung will im Mittel für einen Einkauf einen Rabatt von 16 % gewähren. Berechnen Sie für diese Vorgabe den Wert der Wahrscheinlichkeit \(p\).

    (3 BE)

  • Zeigen Sie, dass für den Erwartungswert \(E(X)\) der Zufallsgröße \(X\) gilt: \(E(X) = 9p^2 + 12p + 4\).

    (3 BE)

  • Der Marketingchef einer Handelskette plant eine Werbeaktion, bei der ein Kunde die Höhe des Rabatts bei seinem Einkauf durch zweimaliges Drehen an einem Glücksrad selbst bestimmen kann. Das Glücksrad hat zwei Sektoren, die mit den Zahlen 5 bzw. 2 beschriftet sind (vgl. Abbildung).

    Abbildung zu Teilaufgabe 1 Stichhaltig 1 Prüfungsteil B Mathematik Abitur Bayern 2015

     

    Der Rabatt in Prozent errechnet sich als Produkt der beiden Zahlen, die der Kunde bei zweimaligem Drehen am Glücksrad erzielt.

    Die Zufallsgröße \(X\) beschreibt die Höhe dieses Rabatts in Prozent, kann also die Werte 4, 10 oder 25 annehmen. Die zahl 5 wird beim Drehen des Glücksrads mit der Wahrscheinlichkeit \(p\) erzielt.

    Vereinfachend soll davon ausgegangen werden, dass jeder Kunde genau einen Einkauf tätigt und auch tatsächlich am Glücksrad dreht.

    Ermitteln Sie mithilfe eines Baumdiagramms die Wahrscheinlichkeit dafür, dass ein Kunde bei seinem Einkauf einen Rabatt von 10 % erhält.

    (Ergebnis: \(2p - 2p^2\))

    (3 BE)

  • Der Sender hat festgestellt, dass unmittelbar neben dem Moderator auf einer Seite die Journalistin und auf der anderen Seite einer der Politiker sitzen soll. Berechnen Sie unter Berücksichtigung dieser weiteren Einschränkung die Anzahl der möglichen Sitzordnungen. 

    (4 BE)