Stochastik 2

  • Betrachtet wir das Ereignis \(E\): „Nach Durchführung des Zufallsexperiments befinden sich wieder drei weiße Kugeln in Urne A." Untersuchen Sie, ob das Ereignis \(E\) eine größere Wahrscheinlichkeit als sein Gegenereignis hat.

    (3 BE)

  • Acht Personen spielen nacheinander jeweils einmal das Spiel „2022".

    Berechnen Sie die Wahrscheinlichkeit dafür, dass die SMV mehr als zweimal mindestens 4 € ausbezahlen muss.

    (4 BE)

  • Gegeben ist die Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4;5\}\). Die Wahrscheinlichkeitsverteilung von \(X\) ist symmetrisch, d. h. es gilt \(P(X = 0) = P(X = 5)\), \(P(X = 1) = P(X = 4)\), \(P(X = 2) = P(X = 3)\).

    Die Tabelle zeigt die Wahrscheinlichkeitswerte \(P(X \leq k)\) für \(k \in \{0; 1; 2\}\).

    Tabelle Aufgabe a,b Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Tragen Sie die fehlenden Werte in die Tabelle ein.

    (2 BE)

  • Die binomialverteilte Zufallsgröße \(Y\) hat die Parameter \(n = 8\) und \(p_Y = 1 - p_X\). Kennzeichnen Sie in Abbildung 2 eine Fläche, die die Wahrscheinlichkeit \(P(Y \geq 6)\) darstellt.

    (2 BE)

  • In einem Supermarkt erhalten Kunden abhängig vom Wert ihres Einkaufs eine bestimmte Anzahl von Päckchen mit Tierbildern, die in ein Sammelalbum eingeklebt werden können. Jedes Päckchen enthält fünf Bilder. Im Sammelalbum sind Plätze für insgesamt 200 verschiedene Bilder vorgesehen. Die Bilder werden jeweils in großer Stückzahl mit der gleichen Häufigkeit produziert und auf die Päckchen zufällig verteilt, wobei sich die Bilder in einem Päckchen nicht unterscheiden müssen.

    Begründen Sie, dass der Term \(\dfrac{200 \cdot 199 \cdot 198 \cdot 197 \cdot 196}{200^5}\) die Wahrscheinlichkeit dafür beschreibt, dass sich in einem Päckchen fünf verschiedene Tierbilder befinden.

    (2 BE)

  • Einem Jungen fehlen in seinem Sammelalbum noch 15 Bilder. Er geht mit seiner Mutter zum Einkaufen und erhält anschließend zwei Päckchen mit Tierbildern. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Päckchen nur Bilder enthalten, die der Junge bereits in seinem Sammelalbum hat.

    (3 BE)

  • Bei Kindern besonders beliebt sind die 3D-Bilder, auf denen die Tiere dreidimensional erscheinen. 20 der 200 für ein Sammelalbum vorgesehenen Bilder sind 3D-Bilder.

    Ermitteln Sie, wie viele Päckchen ein Kind mindestens benötigt, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein 3D-Bild zu erhalten.

    (5 BE)

  • An einem P-Seminar nehmen acht Mädchen und sechs Jungen teil, darunter Anna und Tobias. Für eine Präsentation wird per Los aus den Teilnehmerinnen und Teilnehmern ein Team aus vier Personen zusammengestellt.

    Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses berechnet werden kann.

    \(A\): „Anna und Tobias gehören dem Team an."

    \(B\): „Das Team besteht aus gleich vielen Mädchen und Jungen."

    (3 BE)

  • Angenommen, der beschriebene Test wird auf der Grundlage einer Stichprobe von nur 100 Touristen durchgeführt. In diesem Fall wird die Nullhypothese abgelehnt, wenn sich unter diesen mehr als 20 Radausflügler befinden. Damit die Wahrscheinlichkeit für den Fehler zweiter Art höchstens 30 % beträgt, muss der tatsächliche Anteil der Radausflügler unter allen Touristen mindestens einen bestimmten Wert haben. Ermitteln Sie diesen Wert auf ganze Prozent genau und beschreiben Sie die Bedeutung des Fehlers zweiter Art im Sachzusammenhang.
    Hinweis: Die unten abgebildete Tabelle ergänzt das zugelassene Tafelwerk.

    Binomialverteilung kumulativ; \(k \mapsto \sum \limits_{i\,=\,0}^k B(n;p;i)\)

    Tabelle Stochastik 2 Prüfungsteil B Mathematik Abiturprüfung Bayern 2025

    (5 BE)

  • Die drei leeren Seiten des Würfels sollen jeweils mit einer positiven geraden Zahl beschriftet werden. Ermitteln Sie eine Möglichkeit für die Beschriftung dieser drei Seiten, sodass bei einmaligem Werfen des Würfels der Erwartungswert für die Zahl \(\dfrac{31}{6}\) beträgt.

    (3 BE)

  • Ein Süßwarenunternehmen stellt verschiedene Sorten Fruchtgummis her.

    Luisa nimmt an einer Betriebsbesichtigung des Unternehmens teil. Zu Beginn der Führung bekommt sie ein Tütchen mit zehn Gummibärchen, von denen fünf weiß. zwei rot und drei grün sind. Luisa öffnet das Tütchen und nimmt, ohne hinzusehen, drei Gummibärchen heraus. Berechnen Sie die Wahrscheinlichkeit dafür, dass die drei Gummibärchen die gleiche Farbe haben.

    (3 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der Zufallsgröße \(X\) höchstens um eine Standardabweichung vom Erwartungswert der Zufallsgröße abweicht.

    (4 BE)

  • Für ein Zufallsexperiment wird eine Zufallsgröße \(X\) festgelegt, welche die drei Werte -2, 1 und 2 annehmen kann. In der Abbildung ist die Wahrscheinlichkeitsverteilung von \(X\) dargestellt.

    Ermitteln Sie mithilfe der Abbildung den Erwartungswert der Zufallsgröße \(X\).

    Abbildung zu Teilaufgabe 2 Stochastik 2 Prüfungsteil A Mathematik Abitur Bayern 2015

     

    (2 BE)

  • Das Zufallsexperiment wird zweimal durchgeführt. Dabei wird jeweils der Wert der Zufallsgröße \(X\) notiert. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe dieser beiden Werte negativ ist. 

    (3 BE)

  • Die beiden Diagramme zeigen für die Bevölkerungsgruppe der über 14-jährigen in Deutschland Daten zur Altersstruktur und zum Besitz von Mobiltelefonen.

    Diagramme zu Teilaufgabe 1 Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2015

    Aus den über 14-jährigen in Deutschland wird eine Person zufällig ausgewählt. Betrachtet werden folgende Ereignisse:

    \(M\): „Die Person besitzt ein Mobiltelefon."

    \(S\): „Die Person ist 65 Jahre oder älter."

    \(E\): „Mindestens eines der Ereignisse \(M\) und \(S\) tritt ein."

    Geben Sie an, welche zwei der folgenden Mengen I bis VI jeweils das Ereignis \(E\) beschreiben.

    \[\textsf{I}\enspace \, \quad M \cap S\]

    \[\textsf{II} \;\, \quad M \cup S\]

    \[\textsf{III} \quad \overline{M \cup S}\]

    \[\textsf{IV} \quad (M \cap \overline{S}) \cup (\overline{M} \cap S) \cup (\overline{M} \cap \overline{S})\]

    \[\textsf{V} \; \quad (M \cap S) \cup (M \cap \overline{S}) \cup (\overline{M} \cap S)\]

    \[\textsf{VI} \quad \overline{M \cap S}\]

     

    (2 BE)

  • Entscheiden Sie anhand geeigneter Terme und auf der Grundlage der vorliegenden Daten, welche der beiden folgenden Wahrscheinlichkeiten größer ist. Begründen Sie Ihre Entscheidung.

    \(p_{1}\) ist die Wahrscheinlichkeit dafür, dass die ausgewählte Person ein Mobiltelefon besitzt, wenn bekannt ist, dass sie 65 Jahre oder älter ist.

    \(p_{2}\) ist die Wahrscheinlichkeit dafür, dass die ausgewählte Person 65 Jahre oder älter ist, wenn bekannt ist, dass sie ein Mobiltelefon besitzt.

    (3 BE)

  • Im Folgenden wird ein Glücksrad mit n gleich großen Sektoren, die mit den Zahlen 0 bis n - 1 durchnummeriert sind, betrachtet.

    Bestimmen Sie für n = 5 die Wahrscheinlichkeit dafür, dass bei dreimaligem Drehen des Glücksrads genau zwei gleiche Zahlen erzielt werden.

    (3 BE) 

  • Die Abbildung zeigt das Netz eines Würfels, von dem nur drei Seiten beschriftet sind.

    Abbildung Stochastik 2 Prüfungsteil A Mathematik Abitur Bayern 2022

    Der Würfel wird so lange geworfen, bis die Zahl 1 zum ersten Mal erzielt wird. Berechnen Sie die Wahrscheinlichkeit dafür, dass genau viermal gewürfelt wird.

    (2 BE)

  • Die binomialverteilte Zufallsgröße \(X\) mit den Parametern \(n = 8\) und \(p_X\) besitzt die Standardabweichung \(\frac{4}{3}\). In Abbildung 2 ist die Wahrscheinlichkeitsverteilung von \(X\) dargestellt.

    Abbildung 2 Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2022Abb. 2

    Ermitteln Sie den Wert des Parameters \(p_X\).

    (4 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem Term \(\sum \limits_{i\,=\,5}^{8}B\left( 25;\frac{1}{6};i \right)\) berechnet werden kann.

    (2 BE)