Tangentensteigung

  • Aufgabe 1

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{8x}{x^{2} + 4}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie den maximalen Definitionsbereich der Funktion \(f\) und ermitteln Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs. Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    c) Weisen Sie nach, dass der Graph \(G_{f}\) durch den Koordinatenursprung \(O(0|0)\) verläuft und berechnen Sie die Größe des Winkels, unter dem \(G_{f}\) die \(x\)-Achse schneidet.

    (Teilergebnis: \(f'(x) = -\dfrac{8(x^{2} - 4)}{(x^{2} + 4)^{2}}\))

    d) Bestimmen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

    e) Zeichnen Sie den Graphen \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

     

    Aufgabe 2

    Der Graph \(G_{f}\) einer gebrochenrationalen Funktion \(f\) hat folgende Eigenschaften:

    \(G_{f}\) hat genau die zwei Nullstellen \(x = 0\) und \(x = 4\).

    \(G_{f}\) hat genau die zwei Polstellen mit Vorzeichenwechsel \(x = -1\) und \(x = 2\).

    \(G_{f}\) hat eine waagrechte Asymptote mit der Gleichung \(y = 2\).

     

    a) Geben Sie einen möglichen Funktionsterm der Funktion \(f\) an und skizzieren Sie den Graphen der Funktion \(f\).

    b) „Der Funktionsterm \(f(x)\) ist durch die genannten Eigenschaften eindeutig bestimmt." Nehmen Sie zu dieser Aussage begründend Stellung.

     

    Aufgabe 3

    Gegeben ist die in \(\mathbb R\) definierte  Funktionenschar \(f_{a}(x) = x^{3} - ax + 3\) mit \(a \in \mathbb R\). Die Kurvenschar der Funktionenschar \(f_{a}\) wird mit \(G_{f_{a}}\) bezeichnet.

     

    Bestimmen Sie den Wert des Parameters \(a\) so, dass der zugehörige Graph der Kurvenschar \(G_{f_{a}}\)

    a) zwei Extrempunkte

    b) einen Terrassenpunkt

    besitzt.

     

    Aufgabe 4

    Abbildung zu Aufgabe 4 Klausur Q11/1-004

    Nach der Einnahme eines Medikaments wird die Konzentration \(K\) des Medikaments im Blut eines Patienten gemessen.

    Die Funktion \(K \colon t \mapsto \dfrac{100t}{t^{2} + 25}\) mit \(t \geq 0\) beschreibt näherungsweise den Verlauf \(K(t)\) der Konzentration des Medikaments in Milligramm pro Liter in Abhängigkeit von der Zeit \(t\) in Stunden (vgl. Abbildung).

     

    a) Bestimmen Sie den Zeitpunkt nach der Einnahme des Medikaments, zu dem die Konzentration \(K\) des Medikaments im Blut des Patienten noch 10 % der maximalen Konzentration beträgt auf Minuten genau.

    (Teilergebnis: \(K'(t) = -\dfrac{100(t^{2} - 25)}{(t^{2} + 25)^{2}}\))

    b) Berechnen Sie die mittlere Änderungsrate der Konzentration \(K\) im Zeitintervall \([10;20]\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

     

    Aufgabe 5

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto f(x)\) mit

     

    \[f(x) = \vert 2x - 4 \vert = \begin{cases} \begin{align*} 2x - 4 \; \text{falls} \; &x \geq 0 \\[0.8em] -(2x - 4) \; \text{falls} \; &x < 0 \end{align*} \end{cases}\]

     

    Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Skizzieren Sie \(G_{f}\) in ein geeignetes Koordinatensystem und begründen Sie geometrisch, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

    b) Bestätigen Sie durch Rechnung, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

  • Aufgabe 1

    Geben Sie eine gebrochenrationale Funktion \(f\) an, deren Graph die Asymptote mit der Gleichung \(y = 2x - 1\) sowie die Nullstelle \(x = 2\) besitzt.

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{4x + 4}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Geben Sie die maximale Definitionsmenge sowie die Nullstelle(n) und die Polstelle(n) der Funktion \(f\) an. Bestimmen Sie die Gleichungen aller Asymptoten des Graphen der Funktion \(f\).

    b) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    c) Leiten Sie die Funktion \(f\) sowohl mit der Produkt- als auch der Quotientenregel ab.

    (Zur Kontrolle: \(f'(x) = \dfrac{-4x - 8}{x^{3}}\))

    d) Bestimmen Sie die Nullstelle(n) der Ableitungsfunktion und deuten Sie das Ergebnis geometrisch.

    e) Ermitteln Sie die Gleichung der Tangente \(T\) an \(G_{f}\) an der Stelle \(x = 2\).

     

    Aufgabe 3

    a) Berechnen Sie die Ableitung folgender Funktionen mithilfe der Ableitungsregeln ohne anschließend zu vereinfachen.

     

    α) \(f(x) = 3x^{4} - \dfrac{3}{x} + 6\)

    β) \(g(x) = (2x - 3)(x^{2} - t)\)

    γ) \(h(x) = \dfrac{3x - 5}{3 - x^{3}}\)

     

    b) Bestimmen Sie eine Stammfunktion der Funktion \(f \colon x \mapsto 3x^{4} + \dfrac{3}{x^{3}} - 4\).

     

    Aufgabe 4

    Gegeben ist die Funktion \(f \colon x \mapsto 4x^{2} - 1\).

     

    a) Bestimmen Sie die mittlere Änderungsrate auf dem Intervall \([1;3]\).

    b) Bestimmen Sie \(f'(2)\) unter Verwendung des Differentialquotienten.

     

    Aufgabe 5

    Florian behauptet: „Sind die Ableitungen von zwei Funktionen gleich, so sind auch die Funktionen selbst gleich."

    Nehmen Sie zu Florians Aussage begründend Stellung.

     

    Aufgabe 6

    Ordnen Sie die Graphen I bis VI den freien Feldern der Tabelle so zu, dass unter einem Funktionsgraphen jeweils der Graph seiner Ableitung zu sehen ist und beschriften Sie die Felder entsprechend. Begründen Sie Ihre Wahl für die erste Spalte.

    Hinweis: Die Skalierung der Koordinatenachsen ist für alle abgebildeten Graphen dieselbe.

     

    Funktionsgraph links oben der Tabelle zu Aufgabe 6    
      Funktionsgraph mittig der Tabelle zu Aufgabe 6   
        Funktionsgraph rechts unten der Tabelle zu Aufgabe 6 

     

    Graphen I bis VI:

    Graph I Graph II Graph III
    Graph IV Graph V Graph VI
  • Aufgabe 1

    Berechnen Sie jeweils die erste Ableitung der folgenden Funktionen:

     

    a) \(f(x) = (3x + 2) \cdot \sqrt{\dfrac{1}{x} + 2}; \; x \neq 0\)

    b) \(g(x) = e^{\frac{\cos{x}}{x}}; \; x \neq 0\)

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto 2x^{2} \cdot \sin{x}\).

    Bestimmen Sie die Gleichung der Tangente \(T\) an den Graphen \(G_{f}\) der Funktion \(f\) an der Stelle \(x = \frac{\pi}{2}\).

     

    Aufgabe 3

    Gegeben ist die Funktionenschar \(f_{k} \colon x \mapsto x \cdot \sqrt{k - 2x}\) mit \(k \in \mathbb R^{+}\).

     

    a) Geben Sie die maximale Definitionsmenge von \(f_{k}\) in Abhängigkeit des Parameters \(k\) an.

    b) Untersuchen Sie das Symmetrieverhalten der Kurvenschar von \(f_{k}\) bezüglich des Koordinatensystems.

    c) Untersuchen Sie das Verhalten von \(f_{k}\) an den Rändern des Definitionsbereichs.

    d) Weisen Sie nach, dass für die Ableitung von \(f_{k}\) gilt: \(f'_{k}(x) = \dfrac{k - 3x}{\sqrt{k - 2x}}\).

    Im Folgenden sei \(k = 4\). Der Graph der Funktion \(f_{4}\) wird mit \(G_{f_{4}}\) bezeichnet.

    e) Mithilfe des Ansatzes \(x = f_{4}(x)\) lässt sich der Schnittpunkt des Graphen \(G_{f_{4}}\) mit dem Graphen der Umkehrfunktion von \(f_{4}\) ermitteln. Beschreiben Sie die Idee dieses Ansatzes. Eine Berechnung ist nicht erforderlich!

    f) Untersuchen Sie das Monotonieverhalten von \(f_{4}\) unter Berücksichtigung des maximalen Definitionsbereichs und bestimmen Sie die Lage und Art des Extrempunkts von \(G_{f_{4}}\).

     

    Aufgabe 4

    Gegeben sind die Punkte \(A(4|-2|-1)\), \(B(2|4|5)\) und \(C(5|-6|3)\).

     

    a) Ermitteln Sie die Größe des Innenwinkels \(\alpha\) des Dreiecks \(ABC\).

    b) Geben Sie die Gleichung der Kugel \(K\) mit dem Mittelpunkt \(C\) in Koordinatendarstellung an, auf deren Oberfläche der Punkt \(A\) liegt. Untersuchen Sie mithilfe der Kugelgleichung, ob der Punkt \(B\) innerhalb der Kugel \(K\), auf der Kugeloberfläche von \(K\) oder außerhalb von \(K\) liegt.

     

    Aufgabe 5

    Ein Unternehmen fertigt in großer Stückzahl ein elektronisches Bauteil. Bei der Herstellung können zwei Arten von Fehlern auftreten, ein elektrischer Fehler und ein optischer Fehler. Betrachtet werden folgende Ereignisse:

    \(E\): „Ein zufällig ausgewähltes Bauteil weist einen elektrischen Fehler auf."

    \(O\): „Ein zufällig ausgewähltes Bauteil weist einen optischen Fehler auf."

    Aus laufender Qualitätskontrolle ist bekannt, dass 5 % der gefertigten Bauteile einen elektrischen Fehler aufweisen. Zudem haben 3 % einen elektrischen, aber keinen optischen Fehler sowie 4 % einen optischen, aber keinen elektrischen Fehler.

     

    a) Beschreiben Sie das Ereignis \(\overline{E \cup O}\) im Sachzusammenhang.

    b) Erstellen Sie eine vollständig ausgefüllte Vierfeldertafel und geben Sie daraus an, mit welcher Wahrscheinlichkeit ein zufällig ausgewähltes Bauteil

    α) genau einen der beiden Fehler aufweist.

    β) höchstens einen der beiden Fehler aufweist.

    c) Untersuchen Sie die Ereignisse \(E\) und \(O\) auf Unabhängigkeit.

    d) Wie viele Bauteile müssen mindestens zufällig ausgewählt werden, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Bauteil zu erhalten, das einen elektrischen Fehler aufweist?

  • Betrachtet werden die folgenden Funktionsterme mit \(r,s \in \mathbb N\):

    \(e(x) = \sqrt{x - r} \qquad \qquad  \\ \)\(f(x) = \ln x \qquad \qquad \\ \)\(\displaystyle g(x) = -\frac{1}{x} + s\)

    Jeder der Terme beschreibt genau einen der folgenden Funktionsgraphen I,II und III. Ordnen Sie die Terme den Graphen zu und geben Sie die Werte der Parameter \(r\) und \(s\) an; begründen Sie jeweils Ihre Antwort.

    Graph I

    Graph II

    Graph III

    (5 BE)

  • Berechnen Sie die Steigung der Tangente \(g\) an \(G_{f}\) im Punkt \(P(2|f(2))\) auf eine Dezimale genau. Zeichnen Sie den Punkt \(P\) und die Gerade \(g\) in ein Koordinatensystem ein (Platzbedarf im Hinblick auf das Folgende: \(-4 \leq x \leq 4\), \(-1 \leq y \leq 9\)).

    (3 BE)

  • Betrachtet werden eine in \(\mathbb R\) definierte ganzrationale Funktion \(p\) und der Punkt \(Q(2|p(2))\).

    Beschreiben Sie, wie man rechnerisch die Gleichung der Tangente an den Graphen von \(p\) im Punkt \(Q\) ermitteln kann.

    (2 BE)

  • Ermitteln Sie grafisch diejenige Stelle \(x_0 \in \mathbb R^+\), für die gilt: Die lokale Änderungsrate von \(g\) an der Stelle \(x_0\) stimmt mit der mittleren Änderungsrate von \(g\) im Intervall \([1;4]\) überein.

    (3 BE)

  • Abbildung 2 zeigt den Graphen \(G_{k}\) einer in \(\mathbb R\) definierten Funktion \(k\). Skizzieren Sie in Abbildung 2 den Graphen der zugehörigen Ableitungsfunktion \(k'\). Berücksichtigen Sie dabei insbesondere einen Näherungswert für die Steigung des Graphen \(G_{k}\) an dessen Wendepunkt \((0|-3)\) sowie die Nullstelle von \(k'\).

    Abbildung 2 zu Teilaufgabe 4 - Analysis 2 - Prüfungsteil A - Mathematik Abitur Bayern 2016

    Abb. 2

    (4 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

    (1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

    (2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

    (3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

    (5 BE)

  • Ermitteln Sie die Gleichung der Tangente an \(G_{g}\) im Schnittpunkt von \(G_{g}\) mit der \(x\)-Achse.

    (4 BE)

  • Skizzieren Sie in der Abbildung den darin fehlenden Teil von \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse.

    (3 BE)

  • Zeigen Sie, dass \(G_{f}\) im Punkt \(W(5|0)\) einen Wendepunkt besitzt, und ermitteln Sie eine Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

    (6 BE)

  • Die Tangente an den Graphen von \(f\) im Punkt \(Q_{a}\) wird mit \(t_{a}\) bezeichnet. Bestimmen Sie rechnerisch denjenigen Wert von \(a \in \mathbb R\), für den \(t_{a}\) durch \(P\) verläuft.

    (3 BE)

  • Gegeben ist die in \(\mathbb R_0^+\) definierte Funktion \(g \colon x \mapsto \sqrt{x} + 1\).

    Bestimmen Sie eine Gleichung der Tangente an den Graphen von \(g\) im Punkt \((1|g(1))\).

    (3 BE) 

  • Die Tangente an den Graphen von \(f\) im Punkt \(S(0|1)\) begrenzt mit den beiden Koordinatenachsen ein Dreieck. Weisen Sie nach, dass dieses Dreieck gleichschenklig ist.

    (3 BE)