Tangentensteigung

  • Der Tunnel soll durch einen Berg führen. Im betrachteten Querschnitt wird das Profil des Berghangs über dem Tunnel durch eine Gerade \(g\) mit der Gleichung \(y = -\frac{4}{3}x + 12\) modelliert.

    Zeigen Sie, dass die Tangente \(t\) an den Graphen von \(f\) im Punkt \(R(4|f(4))\) parallel zu \(g\) verläuft. Zeichnen Sie \(g\) und \(t\) in das Koordinatensystem aus Aufgabe 3a ein.

    (4 BE)

  • Im Rahmen eines W-Seminars modellieren Schülerinnen und Schüler einen Tunnelquerschnitt, der senkrecht zum Tunnelverlauf liegt. Dazu beschreiben sie den Querschnitt der Tunnelwand durch den Graphen einer Funktion in einem Koordinatensystem. Der Querschnitt des Tunnelbodens liegt dabei auf der \(x\)-Achse, sein Mittelpunkt \(M\) im Ursprung des Koordinatensystems; eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität. Für den Tunnelquerschnitt sollen folgende Bedingungen gelten:

    I   Breite des Tunnelbodens: b = 10 m

    II  Höhe des Tunnels an der höchsten Stelle: h = 5 m

    III Der Tunnel ist auf einer Breite von mindestens 6 m mindestens 4 m hoch.

    Abbildung zu Teilaufgabe 1 - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    Eine erste Modellierung des Querschnitts der Tunnelwand verwendet die Funktion \(p \colon x \mapsto -0{,}2x^{2} + 5\) mit dem Definitionsbereich \(D_{p} = [-5;5]\).

    Zeigen Sie, dass die Bedingungen I und II in diesem Modell erfüllt sind. Berechnen Sie die Größe des spitzen Winkels, unter dem bei dieser Modellierung die linke Tunnelwand auf den Tunnelboden trifft.

    (6 BE)

  • Abbildung 1 zeigt den Graphen \(G_f\) einer in \(]-\infty;5[\) definierten Funktion \(f\,\).

    Skizzieren Sie in der Abbildung den Graphen der zugehörigen Ableitungsfunktion \(f'\,\). Berücksichtigen Sie dabei insbesondere einen Näherungswert für \(f'(0)\), die Nullstelle von \(f'\) und das Verhalten von \(f'\) für \(x \mapsto 5\,\).

    Abbildung 1: Graph von fAbb. 1

    (4 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(\displaystyle g \colon x \mapsto x \cdot e^{-2x}\,\).

    Bestimmen Sie die Koordinaten des Punktes, in dem der Graph von \(g\) eine waagrechte Tangente hat.

    (5 BE)

  • Bestimmen Sie die Gleichung der Tangente an den Graphen von \(h\) im Punkt \((1|h(1))\,\).

    (4 BE)

  • Weisen Sie nach, dass die Verbindungsstrecke \([PQ_E]\) und die Tangente an \(G_f\) im Punkt \(Q_E\) senkrecht zueinander sind.

    (5 BE)

  • Abbildung 2 zeigt den Graphen \(G_g\) einer in \(\mathbb R \backslash \{1\}\) definierten gebrochen-rationalen Funktion \(g\) mit folgenden Eigenschaften:

    • Die Funktion \(g\) hat in \(x = 1\) eine Polstelle ohne Vorzeichenwechsel;

    • \(G_g\) verläuft stets oberhalb seiner schrägen Asymptote, die durch die Gleichung \(y = \frac{1}{2}x - 1\) gegeben ist;

    • die einzige Nullstelle von \(g\) ist \(x = -1\).

    Abbildung 2, Teilaufgabe 2a, Graph der gebrochen-rationalen Funktion g Abb. 2

    Ermitteln Sie mithilfe von Abbildung 2 näherungsweise den Wert der Ableitung \(g'\) von \(g\) an der Stelle \(x = -1\); veranschaulichen Sie Ihr Vorgehen durch geeignete Eintragungen in der Abbildung.

    Aus der Gleichung der schrägen Asymptote ergibt sich unmittelbar das Verhalten der Ableitung \(g'\) für \(x \to +\infty\) und \(x \to -\infty\). Geben Sie dieses Verhalten an und skizzieren Sie den Graphen von \(g'\) in Abbildung 2.

    (6 BE)

  • Skizzieren Sie den Graphen von \(F\) in Abbildung 1.

    (2 BE)

  • Ermitteln Sie die Gleichung der Tangente an den Graphen von \(g\) im Punkt \(P\,(0|3)\).

    (4 BE)

  • Bestimmen Sie die Gleichung der Tangente an \(G_f\) im Punkt \((0|6)\). Skizzieren Sie \(G_f\) unter Verwendung der bisherigen Ergebnisse in ein geeignet anzulegendes Koordinatensystem.

    (6 BE)

Seite 5 von 5