Verschieben von Funktionsgraphen

  • Betrachtet wird die in \(\mathbb R^+\) definierte Funktion \(h \colon x \mapsto -\ln x + 3\,\).

    Geben Sie an, wie der Graph von \(h\) schrittweise aus dem Graphen der in \(\mathbb R^{+}\) definierten Funktion \(x \mapsto \ln x\) hervorgeht

    (2 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{x + 3}\) mit Definitionsmenge \(D_f\). Abbildung 1 zeigt den Graphen \(G_f\) von \(f\), einen beliebigen Punkt \(Q(x|f(x))\) auf \(G_f\) sowie den Punkt \(P(1{,}5|0)\) auf der \(x\)-Achse.

    Abbildung 1 Teilaufgabe 1aAbb. 1

    Begründen Sie, dass \(D_f = [-3;+\infty[\) die maximale Definitionsmenge von \(f\) ist. Wie geht \(G_f\) aus dem Graphen der in \(\mathbb R_0^+\) definierten Funktion \(w : x \mapsto \sqrt{x\;}\;\) hervor?

    (2 BE)

  • Abbildung 2 legt die Vermutung nahe, dass \(G_f\) bezüglich des Schnittpunkts \(P\,(-1|-1)\) seiner Asymptoten symmetrisch ist. Zum Nachweis dieser Symmetrie von \(G_f\) kann die Funktion \(g\) betrachtet werden, deren Graph aus \(G_f\) durch Verschiebung um 1 in positive \(x\)-Richtung und um 1 in positive \(y\)-Richtung hervorgeht.

    Bestimmen Sie einen Funktionsterm von \(g\). Weisen Sie anschließend die Punktsymmetrie von \(G_f\) nach, indem Sie zeigen, dass der Graph von \(g\) punktsymmetrisch bezüglich des Koordinatenursprungs ist.

    (Teilergebnis: \(\displaystyle g(x) = \frac{1}{2}x + \frac{8}{x}\))

    (6 BE)

  • Begründen Sie für \(c > 0\) anhand einer geeigneten Skizze, dass \(\displaystyle \int_0^3 g_c(x)\,dx = \int_0^3 f(x)\,dx + 3c\) gilt.

    (2 BE)

  • Die Anzahl der Nullstellen von \(g_c\) hängt von \(c\) ab. Geben Sie jeweils einen möglichen Wert von \(c\) an, sodass gilt:

    α) \(g_c\) hat keine Nullstelle.

    β) \(g_c\) hat genau eine Nullstelle.

    γ) \(g_c\) hat genau zwei Nullstellen.

    (3 BE)

  • Im Folgenden wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_c \colon x \mapsto f(x) + c\) mit \(c \in \mathbb R\) betrachtet.

    Geben Sie in Abhängigkeit von \(c\) ohne weitere Rechnung die Koordinaten des Hochpunkts des Graphen von \(g_c\) sowie das Verhalten von \(g_c\) für \(x \to + \infty\) an.

    (2 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(\mathbb W\) hat.

    \(\mathbb W = [2; + \infty[\)

    (2 BE)

Seite 3 von 3